ref: ed5a993a97c601dd597e1ebd4108f5612c625bc3
dir: /test/dct32x32_test.cc/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include <stdlib.h> #include <string.h> #include "third_party/googletest/src/include/gtest/gtest.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" extern "C" { #include "./vpx_config.h" #include "vp9/common/vp9_entropy.h" #include "./vp9_rtcd.h" } #include "vpx/vpx_integer.h" using libvpx_test::ACMRandom; namespace { #ifdef _MSC_VER static int round(double x) { if (x < 0) return static_cast<int>(ceil(x - 0.5)); else return static_cast<int>(floor(x + 0.5)); } #endif const int kNumCoeffs = 1024; const double kPi = 3.141592653589793238462643383279502884; void reference_32x32_dct_1d(const double in[32], double out[32], int stride) { const double kInvSqrt2 = 0.707106781186547524400844362104; for (int k = 0; k < 32; k++) { out[k] = 0.0; for (int n = 0; n < 32; n++) out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0); if (k == 0) out[k] = out[k] * kInvSqrt2; } } void reference_32x32_dct_2d(const int16_t input[kNumCoeffs], double output[kNumCoeffs]) { // First transform columns for (int i = 0; i < 32; ++i) { double temp_in[32], temp_out[32]; for (int j = 0; j < 32; ++j) temp_in[j] = input[j*32 + i]; reference_32x32_dct_1d(temp_in, temp_out, 1); for (int j = 0; j < 32; ++j) output[j * 32 + i] = temp_out[j]; } // Then transform rows for (int i = 0; i < 32; ++i) { double temp_in[32], temp_out[32]; for (int j = 0; j < 32; ++j) temp_in[j] = output[j + i*32]; reference_32x32_dct_1d(temp_in, temp_out, 1); // Scale by some magic number for (int j = 0; j < 32; ++j) output[j + i * 32] = temp_out[j] / 4; } } typedef void (*fwd_txfm_t)(const int16_t *in, int16_t *out, int stride); typedef void (*inv_txfm_t)(const int16_t *in, uint8_t *out, int stride); class Trans32x32Test : public PARAMS(fwd_txfm_t, inv_txfm_t, int) { public: virtual ~Trans32x32Test() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); version_ = GET_PARAM(2); // 0: high precision forward transform // 1: low precision version for rd loop } virtual void TearDown() { libvpx_test::ClearSystemState(); } protected: int version_; fwd_txfm_t fwd_txfm_; inv_txfm_t inv_txfm_; }; TEST_P(Trans32x32Test, AccuracyCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); uint32_t max_error = 0; int64_t total_error = 0; const int count_test_block = 1000; DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. for (int j = 0; j < kNumCoeffs; ++j) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); test_input_block[j] = src[j] - dst[j]; } REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32)); REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32)); for (int j = 0; j < kNumCoeffs; ++j) { const uint32_t diff = dst[j] - src[j]; const uint32_t error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } if (version_ == 1) { max_error /= 2; total_error /= 45; } EXPECT_GE(1u, max_error) << "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1"; EXPECT_GE(count_test_block, total_error) << "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block"; } TEST_P(Trans32x32Test, CoeffCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs); for (int i = 0; i < count_test_block; ++i) { for (int j = 0; j < kNumCoeffs; ++j) input_block[j] = rnd.Rand8() - rnd.Rand8(); const int stride = 32; vp9_fdct32x32_c(input_block, output_ref_block, stride); REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride)); if (version_ == 0) { for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(output_block[j], output_ref_block[j]) << "Error: 32x32 FDCT versions have mismatched coefficients"; } else { for (int j = 0; j < kNumCoeffs; ++j) EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) << "Error: 32x32 FDCT rd has mismatched coefficients"; } } } TEST_P(Trans32x32Test, MemCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 2000; DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. for (int j = 0; j < kNumCoeffs; ++j) { input_block[j] = rnd.Rand8() - rnd.Rand8(); input_extreme_block[j] = rnd.Rand8() & 1 ? 255 : -255; } if (i == 0) for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = 255; if (i == 1) for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -255; const int stride = 32; vp9_fdct32x32_c(input_extreme_block, output_ref_block, stride); REGISTER_STATE_CHECK(fwd_txfm_(input_extreme_block, output_block, stride)); // The minimum quant value is 4. for (int j = 0; j < kNumCoeffs; ++j) { if (version_ == 0) { EXPECT_EQ(output_block[j], output_ref_block[j]) << "Error: 32x32 FDCT versions have mismatched coefficients"; } else { EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) << "Error: 32x32 FDCT rd has mismatched coefficients"; } EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_ref_block[j])) << "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE"; EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j])) << "Error: 32x32 FDCT has coefficient larger than " << "4*DCT_MAX_VALUE"; } } } TEST_P(Trans32x32Test, InverseAccuracy) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs); for (int i = 0; i < count_test_block; ++i) { double out_r[kNumCoeffs]; // Initialize a test block with input range [-255, 255] for (int j = 0; j < kNumCoeffs; ++j) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); in[j] = src[j] - dst[j]; } reference_32x32_dct_2d(in, out_r); for (int j = 0; j < kNumCoeffs; ++j) coeff[j] = round(out_r[j]); REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32)); for (int j = 0; j < kNumCoeffs; ++j) { const int diff = dst[j] - src[j]; const int error = diff * diff; EXPECT_GE(1, error) << "Error: 32x32 IDCT has error " << error << " at index " << j; } } } using std::tr1::make_tuple; INSTANTIATE_TEST_CASE_P( C, Trans32x32Test, ::testing::Values( make_tuple(&vp9_fdct32x32_c, &vp9_idct32x32_1024_add_c, 0), make_tuple(&vp9_fdct32x32_rd_c, &vp9_idct32x32_1024_add_c, 1))); #if HAVE_SSE2 INSTANTIATE_TEST_CASE_P( SSE2, Trans32x32Test, ::testing::Values( make_tuple(&vp9_fdct32x32_sse2, &vp9_idct32x32_1024_add_sse2, 0), make_tuple(&vp9_fdct32x32_rd_sse2, &vp9_idct32x32_1024_add_sse2, 1))); #endif } // namespace