ref: ed5b3db6c5f6dd981c7dbcf4c71c508d8e858ba8
dir: /vpx_dsp/x86/vpx_subpixel_8t_intrin_avx2.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <immintrin.h> #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/x86/convolve.h" #include "vpx_dsp/x86/convolve_avx2.h" #include "vpx_ports/mem.h" // filters for 16_h8 DECLARE_ALIGNED(32, static const uint8_t, filt1_global_avx2[32]) = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; DECLARE_ALIGNED(32, static const uint8_t, filt2_global_avx2[32]) = { 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10 }; DECLARE_ALIGNED(32, static const uint8_t, filt3_global_avx2[32]) = { 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12 }; DECLARE_ALIGNED(32, static const uint8_t, filt4_global_avx2[32]) = { 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14 }; static INLINE void vpx_filter_block1d16_h8_x_avx2( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter, const int avg) { __m128i outReg1, outReg2; __m256i outReg32b1, outReg32b2; unsigned int i; ptrdiff_t src_stride, dst_stride; __m256i f[4], filt[4], s[4]; shuffle_filter_avx2(filter, f); filt[0] = _mm256_load_si256((__m256i const *)filt1_global_avx2); filt[1] = _mm256_load_si256((__m256i const *)filt2_global_avx2); filt[2] = _mm256_load_si256((__m256i const *)filt3_global_avx2); filt[3] = _mm256_load_si256((__m256i const *)filt4_global_avx2); // multiple the size of the source and destination stride by two src_stride = src_pixels_per_line << 1; dst_stride = output_pitch << 1; for (i = output_height; i > 1; i -= 2) { __m256i srcReg; // load the 2 strides of source srcReg = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(src_ptr - 3))); srcReg = _mm256_inserti128_si256( srcReg, _mm_loadu_si128((const __m128i *)(src_ptr + src_pixels_per_line - 3)), 1); // filter the source buffer s[0] = _mm256_shuffle_epi8(srcReg, filt[0]); s[1] = _mm256_shuffle_epi8(srcReg, filt[1]); s[2] = _mm256_shuffle_epi8(srcReg, filt[2]); s[3] = _mm256_shuffle_epi8(srcReg, filt[3]); outReg32b1 = convolve8_16_avx2(s, f); // reading 2 strides of the next 16 bytes // (part of it was being read by earlier read) srcReg = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(src_ptr + 5))); srcReg = _mm256_inserti128_si256( srcReg, _mm_loadu_si128((const __m128i *)(src_ptr + src_pixels_per_line + 5)), 1); // filter the source buffer s[0] = _mm256_shuffle_epi8(srcReg, filt[0]); s[1] = _mm256_shuffle_epi8(srcReg, filt[1]); s[2] = _mm256_shuffle_epi8(srcReg, filt[2]); s[3] = _mm256_shuffle_epi8(srcReg, filt[3]); outReg32b2 = convolve8_16_avx2(s, f); // shrink to 8 bit each 16 bits, the low and high 64-bits of each lane // contain the first and second convolve result respectively outReg32b1 = _mm256_packus_epi16(outReg32b1, outReg32b2); src_ptr += src_stride; // average if necessary outReg1 = _mm256_castsi256_si128(outReg32b1); outReg2 = _mm256_extractf128_si256(outReg32b1, 1); if (avg) { outReg1 = _mm_avg_epu8(outReg1, _mm_load_si128((__m128i *)output_ptr)); outReg2 = _mm_avg_epu8( outReg2, _mm_load_si128((__m128i *)(output_ptr + output_pitch))); } // save 16 bytes _mm_store_si128((__m128i *)output_ptr, outReg1); // save the next 16 bits _mm_store_si128((__m128i *)(output_ptr + output_pitch), outReg2); output_ptr += dst_stride; } // if the number of strides is odd. // process only 16 bytes if (i > 0) { __m128i srcReg; // load the first 16 bytes of the last row srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); // filter the source buffer s[0] = _mm256_castsi128_si256( _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[0]))); s[1] = _mm256_castsi128_si256( _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[1]))); s[2] = _mm256_castsi128_si256( _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[2]))); s[3] = _mm256_castsi128_si256( _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[3]))); outReg1 = convolve8_8_avx2(s, f); // reading the next 16 bytes // (part of it was being read by earlier read) srcReg = _mm_loadu_si128((const __m128i *)(src_ptr + 5)); // filter the source buffer s[0] = _mm256_castsi128_si256( _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[0]))); s[1] = _mm256_castsi128_si256( _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[1]))); s[2] = _mm256_castsi128_si256( _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[2]))); s[3] = _mm256_castsi128_si256( _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[3]))); outReg2 = convolve8_8_avx2(s, f); // shrink to 8 bit each 16 bits, the low and high 64-bits of each lane // contain the first and second convolve result respectively outReg1 = _mm_packus_epi16(outReg1, outReg2); // average if necessary if (avg) { outReg1 = _mm_avg_epu8(outReg1, _mm_load_si128((__m128i *)output_ptr)); } // save 16 bytes _mm_store_si128((__m128i *)output_ptr, outReg1); } } static void vpx_filter_block1d16_h8_avx2( const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *output_ptr, ptrdiff_t dst_stride, uint32_t output_height, const int16_t *filter) { vpx_filter_block1d16_h8_x_avx2(src_ptr, src_stride, output_ptr, dst_stride, output_height, filter, 0); } static void vpx_filter_block1d16_h8_avg_avx2( const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *output_ptr, ptrdiff_t dst_stride, uint32_t output_height, const int16_t *filter) { vpx_filter_block1d16_h8_x_avx2(src_ptr, src_stride, output_ptr, dst_stride, output_height, filter, 1); } static INLINE void vpx_filter_block1d16_v8_x_avx2( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter, const int avg) { __m128i outReg1, outReg2; __m256i srcRegHead1; unsigned int i; ptrdiff_t src_stride, dst_stride; __m256i f[4], s1[4], s2[4]; shuffle_filter_avx2(filter, f); // multiple the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; { __m128i s[6]; __m256i s32b[6]; // load 16 bytes 7 times in stride of src_pitch s[0] = _mm_loadu_si128((const __m128i *)(src_ptr + 0 * src_pitch)); s[1] = _mm_loadu_si128((const __m128i *)(src_ptr + 1 * src_pitch)); s[2] = _mm_loadu_si128((const __m128i *)(src_ptr + 2 * src_pitch)); s[3] = _mm_loadu_si128((const __m128i *)(src_ptr + 3 * src_pitch)); s[4] = _mm_loadu_si128((const __m128i *)(src_ptr + 4 * src_pitch)); s[5] = _mm_loadu_si128((const __m128i *)(src_ptr + 5 * src_pitch)); srcRegHead1 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + 6 * src_pitch))); // have each consecutive loads on the same 256 register s32b[0] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[0]), s[1], 1); s32b[1] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[1]), s[2], 1); s32b[2] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[2]), s[3], 1); s32b[3] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[3]), s[4], 1); s32b[4] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[4]), s[5], 1); s32b[5] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[5]), _mm256_castsi256_si128(srcRegHead1), 1); // merge every two consecutive registers except the last one // the first lanes contain values for filtering odd rows (1,3,5...) and // the second lanes contain values for filtering even rows (2,4,6...) s1[0] = _mm256_unpacklo_epi8(s32b[0], s32b[1]); s2[0] = _mm256_unpackhi_epi8(s32b[0], s32b[1]); s1[1] = _mm256_unpacklo_epi8(s32b[2], s32b[3]); s2[1] = _mm256_unpackhi_epi8(s32b[2], s32b[3]); s1[2] = _mm256_unpacklo_epi8(s32b[4], s32b[5]); s2[2] = _mm256_unpackhi_epi8(s32b[4], s32b[5]); } for (i = output_height; i > 1; i -= 2) { __m256i srcRegHead2, srcRegHead3; // load the next 2 loads of 16 bytes and have every two // consecutive loads in the same 256 bit register srcRegHead2 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + 7 * src_pitch))); srcRegHead1 = _mm256_inserti128_si256( srcRegHead1, _mm256_castsi256_si128(srcRegHead2), 1); srcRegHead3 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + 8 * src_pitch))); srcRegHead2 = _mm256_inserti128_si256( srcRegHead2, _mm256_castsi256_si128(srcRegHead3), 1); // merge the two new consecutive registers // the first lane contain values for filtering odd rows (1,3,5...) and // the second lane contain values for filtering even rows (2,4,6...) s1[3] = _mm256_unpacklo_epi8(srcRegHead1, srcRegHead2); s2[3] = _mm256_unpackhi_epi8(srcRegHead1, srcRegHead2); s1[0] = convolve8_16_avx2(s1, f); s2[0] = convolve8_16_avx2(s2, f); // shrink to 8 bit each 16 bits, the low and high 64-bits of each lane // contain the first and second convolve result respectively s1[0] = _mm256_packus_epi16(s1[0], s2[0]); src_ptr += src_stride; // average if necessary outReg1 = _mm256_castsi256_si128(s1[0]); outReg2 = _mm256_extractf128_si256(s1[0], 1); if (avg) { outReg1 = _mm_avg_epu8(outReg1, _mm_load_si128((__m128i *)output_ptr)); outReg2 = _mm_avg_epu8( outReg2, _mm_load_si128((__m128i *)(output_ptr + out_pitch))); } // save 16 bytes _mm_store_si128((__m128i *)output_ptr, outReg1); // save the next 16 bits _mm_store_si128((__m128i *)(output_ptr + out_pitch), outReg2); output_ptr += dst_stride; // shift down by two rows s1[0] = s1[1]; s2[0] = s2[1]; s1[1] = s1[2]; s2[1] = s2[2]; s1[2] = s1[3]; s2[2] = s2[3]; srcRegHead1 = srcRegHead3; } // if the number of strides is odd. // process only 16 bytes if (i > 0) { // load the last 16 bytes const __m128i srcRegHead2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)); // merge the last 2 results together s1[0] = _mm256_castsi128_si256( _mm_unpacklo_epi8(_mm256_castsi256_si128(srcRegHead1), srcRegHead2)); s2[0] = _mm256_castsi128_si256( _mm_unpackhi_epi8(_mm256_castsi256_si128(srcRegHead1), srcRegHead2)); outReg1 = convolve8_8_avx2(s1, f); outReg2 = convolve8_8_avx2(s2, f); // shrink to 8 bit each 16 bits, the low and high 64-bits of each lane // contain the first and second convolve result respectively outReg1 = _mm_packus_epi16(outReg1, outReg2); // average if necessary if (avg) { outReg1 = _mm_avg_epu8(outReg1, _mm_load_si128((__m128i *)output_ptr)); } // save 16 bytes _mm_store_si128((__m128i *)output_ptr, outReg1); } } static void vpx_filter_block1d16_v8_avx2(const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *dst_ptr, ptrdiff_t dst_stride, uint32_t height, const int16_t *filter) { vpx_filter_block1d16_v8_x_avx2(src_ptr, src_stride, dst_ptr, dst_stride, height, filter, 0); } static void vpx_filter_block1d16_v8_avg_avx2( const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *dst_ptr, ptrdiff_t dst_stride, uint32_t height, const int16_t *filter) { vpx_filter_block1d16_v8_x_avx2(src_ptr, src_stride, dst_ptr, dst_stride, height, filter, 1); } #if HAVE_AVX2 && HAVE_SSSE3 filter8_1dfunction vpx_filter_block1d4_v8_ssse3; #if ARCH_X86_64 filter8_1dfunction vpx_filter_block1d8_v8_intrin_ssse3; filter8_1dfunction vpx_filter_block1d8_h8_intrin_ssse3; filter8_1dfunction vpx_filter_block1d4_h8_intrin_ssse3; #define vpx_filter_block1d8_v8_avx2 vpx_filter_block1d8_v8_intrin_ssse3 #define vpx_filter_block1d8_h8_avx2 vpx_filter_block1d8_h8_intrin_ssse3 #define vpx_filter_block1d4_h8_avx2 vpx_filter_block1d4_h8_intrin_ssse3 #else // ARCH_X86 filter8_1dfunction vpx_filter_block1d8_v8_ssse3; filter8_1dfunction vpx_filter_block1d8_h8_ssse3; filter8_1dfunction vpx_filter_block1d4_h8_ssse3; #define vpx_filter_block1d8_v8_avx2 vpx_filter_block1d8_v8_ssse3 #define vpx_filter_block1d8_h8_avx2 vpx_filter_block1d8_h8_ssse3 #define vpx_filter_block1d4_h8_avx2 vpx_filter_block1d4_h8_ssse3 #endif // ARCH_X86_64 filter8_1dfunction vpx_filter_block1d8_v8_avg_ssse3; filter8_1dfunction vpx_filter_block1d8_h8_avg_ssse3; filter8_1dfunction vpx_filter_block1d4_v8_avg_ssse3; filter8_1dfunction vpx_filter_block1d4_h8_avg_ssse3; #define vpx_filter_block1d8_v8_avg_avx2 vpx_filter_block1d8_v8_avg_ssse3 #define vpx_filter_block1d8_h8_avg_avx2 vpx_filter_block1d8_h8_avg_ssse3 #define vpx_filter_block1d4_v8_avg_avx2 vpx_filter_block1d4_v8_avg_ssse3 #define vpx_filter_block1d4_h8_avg_avx2 vpx_filter_block1d4_h8_avg_ssse3 filter8_1dfunction vpx_filter_block1d16_v2_ssse3; filter8_1dfunction vpx_filter_block1d16_h2_ssse3; filter8_1dfunction vpx_filter_block1d8_v2_ssse3; filter8_1dfunction vpx_filter_block1d8_h2_ssse3; filter8_1dfunction vpx_filter_block1d4_v2_ssse3; filter8_1dfunction vpx_filter_block1d4_h2_ssse3; #define vpx_filter_block1d4_v8_avx2 vpx_filter_block1d4_v8_ssse3 #define vpx_filter_block1d16_v2_avx2 vpx_filter_block1d16_v2_ssse3 #define vpx_filter_block1d16_h2_avx2 vpx_filter_block1d16_h2_ssse3 #define vpx_filter_block1d8_v2_avx2 vpx_filter_block1d8_v2_ssse3 #define vpx_filter_block1d8_h2_avx2 vpx_filter_block1d8_h2_ssse3 #define vpx_filter_block1d4_v2_avx2 vpx_filter_block1d4_v2_ssse3 #define vpx_filter_block1d4_h2_avx2 vpx_filter_block1d4_h2_ssse3 filter8_1dfunction vpx_filter_block1d16_v2_avg_ssse3; filter8_1dfunction vpx_filter_block1d16_h2_avg_ssse3; filter8_1dfunction vpx_filter_block1d8_v2_avg_ssse3; filter8_1dfunction vpx_filter_block1d8_h2_avg_ssse3; filter8_1dfunction vpx_filter_block1d4_v2_avg_ssse3; filter8_1dfunction vpx_filter_block1d4_h2_avg_ssse3; #define vpx_filter_block1d16_v2_avg_avx2 vpx_filter_block1d16_v2_avg_ssse3 #define vpx_filter_block1d16_h2_avg_avx2 vpx_filter_block1d16_h2_avg_ssse3 #define vpx_filter_block1d8_v2_avg_avx2 vpx_filter_block1d8_v2_avg_ssse3 #define vpx_filter_block1d8_h2_avg_avx2 vpx_filter_block1d8_h2_avg_ssse3 #define vpx_filter_block1d4_v2_avg_avx2 vpx_filter_block1d4_v2_avg_ssse3 #define vpx_filter_block1d4_h2_avg_avx2 vpx_filter_block1d4_h2_avg_ssse3 // void vpx_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, int y_step_q4, // int w, int h); // void vpx_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, int y_step_q4, // int w, int h); // void vpx_convolve8_avg_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, // int y_step_q4, int w, int h); // void vpx_convolve8_avg_vert_avx2(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, // int y_step_q4, int w, int h); FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , avx2); FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * 3, , avx2); FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, avx2); FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v, src - src_stride * 3, avg_, avx2); // void vpx_convolve8_avx2(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, int y_step_q4, // int w, int h); // void vpx_convolve8_avg_avx2(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, int y_step_q4, // int w, int h); FUN_CONV_2D(, avx2); FUN_CONV_2D(avg_, avx2); #endif // HAVE_AX2 && HAVE_SSSE3