ref: efa82922e40531bda3e3f5e02ad4cfb51b4c514a
dir: /test/convolve_test.cc/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <string.h> #include "test/acm_random.h" #include "test/register_state_check.h" #include "test/util.h" #include "third_party/googletest/src/include/gtest/gtest.h" #include "./vpx_config.h" #include "./vp9_rtcd.h" #include "vp9/common/vp9_filter.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" namespace { typedef void (*ConvolveFunc)(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int filter_x_stride, const int16_t *filter_y, int filter_y_stride, int w, int h); struct ConvolveFunctions { ConvolveFunctions(ConvolveFunc h8, ConvolveFunc h8_avg, ConvolveFunc v8, ConvolveFunc v8_avg, ConvolveFunc hv8, ConvolveFunc hv8_avg) : h8_(h8), v8_(v8), hv8_(hv8), h8_avg_(h8_avg), v8_avg_(v8_avg), hv8_avg_(hv8_avg) {} ConvolveFunc h8_; ConvolveFunc v8_; ConvolveFunc hv8_; ConvolveFunc h8_avg_; ConvolveFunc v8_avg_; ConvolveFunc hv8_avg_; }; typedef std::tr1::tuple<int, int, const ConvolveFunctions *> ConvolveParam; // Reference 8-tap subpixel filter, slightly modified to fit into this test. #define VP9_FILTER_WEIGHT 128 #define VP9_FILTER_SHIFT 7 uint8_t clip_pixel(int x) { return x < 0 ? 0 : x > 255 ? 255 : x; } void filter_block2d_8_c(const uint8_t *src_ptr, const unsigned int src_stride, const int16_t *HFilter, const int16_t *VFilter, uint8_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height) { // Between passes, we use an intermediate buffer whose height is extended to // have enough horizontally filtered values as input for the vertical pass. // This buffer is allocated to be big enough for the largest block type we // support. const int kInterp_Extend = 4; const unsigned int intermediate_height = (kInterp_Extend - 1) + output_height + kInterp_Extend; /* Size of intermediate_buffer is max_intermediate_height * filter_max_width, * where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height * + kInterp_Extend * = 3 + 16 + 4 * = 23 * and filter_max_width = 16 */ uint8_t intermediate_buffer[71 * 64]; const int intermediate_next_stride = 1 - intermediate_height * output_width; // Horizontal pass (src -> transposed intermediate). { uint8_t *output_ptr = intermediate_buffer; const int src_next_row_stride = src_stride - output_width; unsigned int i, j; src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1); for (i = 0; i < intermediate_height; ++i) { for (j = 0; j < output_width; ++j) { // Apply filter... const int temp = (src_ptr[0] * HFilter[0]) + (src_ptr[1] * HFilter[1]) + (src_ptr[2] * HFilter[2]) + (src_ptr[3] * HFilter[3]) + (src_ptr[4] * HFilter[4]) + (src_ptr[5] * HFilter[5]) + (src_ptr[6] * HFilter[6]) + (src_ptr[7] * HFilter[7]) + (VP9_FILTER_WEIGHT >> 1); // Rounding // Normalize back to 0-255... *output_ptr = clip_pixel(temp >> VP9_FILTER_SHIFT); ++src_ptr; output_ptr += intermediate_height; } src_ptr += src_next_row_stride; output_ptr += intermediate_next_stride; } } // Vertical pass (transposed intermediate -> dst). { uint8_t *src_ptr = intermediate_buffer; const int dst_next_row_stride = dst_stride - output_width; unsigned int i, j; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { // Apply filter... const int temp = (src_ptr[0] * VFilter[0]) + (src_ptr[1] * VFilter[1]) + (src_ptr[2] * VFilter[2]) + (src_ptr[3] * VFilter[3]) + (src_ptr[4] * VFilter[4]) + (src_ptr[5] * VFilter[5]) + (src_ptr[6] * VFilter[6]) + (src_ptr[7] * VFilter[7]) + (VP9_FILTER_WEIGHT >> 1); // Rounding // Normalize back to 0-255... *dst_ptr++ = clip_pixel(temp >> VP9_FILTER_SHIFT); src_ptr += intermediate_height; } src_ptr += intermediate_next_stride; dst_ptr += dst_next_row_stride; } } } void block2d_average_c(uint8_t *src, unsigned int src_stride, uint8_t *output_ptr, unsigned int output_stride, unsigned int output_width, unsigned int output_height) { unsigned int i, j; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1; } output_ptr += output_stride; } } void filter_average_block2d_8_c(const uint8_t *src_ptr, const unsigned int src_stride, const int16_t *HFilter, const int16_t *VFilter, uint8_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height) { uint8_t tmp[64 * 64]; assert(output_width <= 64); assert(output_height <= 64); filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, tmp, 64, output_width, output_height); block2d_average_c(tmp, 64, dst_ptr, dst_stride, output_width, output_height); } class ConvolveTest : public ::testing::TestWithParam<ConvolveParam> { public: static void SetUpTestCase() { // Force input_ to be unaligned, output to be 16 byte aligned. input_ = reinterpret_cast<uint8_t*>( vpx_memalign(kDataAlignment, kInputBufferSize + 1)) + 1; output_ = reinterpret_cast<uint8_t*>( vpx_memalign(kDataAlignment, kOutputBufferSize)); } static void TearDownTestCase() { vpx_free(input_ - 1); input_ = NULL; vpx_free(output_); output_ = NULL; } protected: static const int kDataAlignment = 16; static const int kOuterBlockSize = 256; static const int kInputStride = kOuterBlockSize; static const int kOutputStride = kOuterBlockSize; static const int kMaxDimension = 64; static const int kInputBufferSize = kOuterBlockSize * kOuterBlockSize; static const int kOutputBufferSize = kOuterBlockSize * kOuterBlockSize; int Width() const { return GET_PARAM(0); } int Height() const { return GET_PARAM(1); } int BorderLeft() const { const int center = (kOuterBlockSize - Width()) / 2; return (center + (kDataAlignment - 1)) & ~(kDataAlignment - 1); } int BorderTop() const { return (kOuterBlockSize - Height()) / 2; } bool IsIndexInBorder(int i) { return (i < BorderTop() * kOuterBlockSize || i >= (BorderTop() + Height()) * kOuterBlockSize || i % kOuterBlockSize < BorderLeft() || i % kOuterBlockSize >= (BorderLeft() + Width())); } virtual void SetUp() { UUT_ = GET_PARAM(2); /* Set up guard blocks for an inner block centered in the outer block */ for (int i = 0; i < kOutputBufferSize; ++i) { if (IsIndexInBorder(i)) output_[i] = 255; else output_[i] = 0; } ::libvpx_test::ACMRandom prng; for (int i = 0; i < kInputBufferSize; ++i) { if (i & 1) input_[i] = 255; else input_[i] = prng.Rand8Extremes(); } } void SetConstantInput(int value) { memset(input_, value, kInputBufferSize); } void CheckGuardBlocks() { for (int i = 0; i < kOutputBufferSize; ++i) { if (IsIndexInBorder(i)) EXPECT_EQ(255, output_[i]); } } uint8_t* input() const { return input_ + BorderTop() * kOuterBlockSize + BorderLeft(); } uint8_t* output() const { return output_ + BorderTop() * kOuterBlockSize + BorderLeft(); } const ConvolveFunctions* UUT_; static uint8_t* input_; static uint8_t* output_; }; uint8_t* ConvolveTest::input_ = NULL; uint8_t* ConvolveTest::output_ = NULL; TEST_P(ConvolveTest, GuardBlocks) { CheckGuardBlocks(); } TEST_P(ConvolveTest, CopyHoriz) { uint8_t* const in = input(); uint8_t* const out = output(); DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0}; ASM_REGISTER_STATE_CHECK( UUT_->h8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) for (int x = 0; x < Width(); ++x) ASSERT_EQ(out[y * kOutputStride + x], in[y * kInputStride + x]) << "(" << x << "," << y << ")"; } TEST_P(ConvolveTest, CopyVert) { uint8_t* const in = input(); uint8_t* const out = output(); DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0}; ASM_REGISTER_STATE_CHECK( UUT_->v8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) for (int x = 0; x < Width(); ++x) ASSERT_EQ(out[y * kOutputStride + x], in[y * kInputStride + x]) << "(" << x << "," << y << ")"; } TEST_P(ConvolveTest, Copy2D) { uint8_t* const in = input(); uint8_t* const out = output(); DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0}; ASM_REGISTER_STATE_CHECK( UUT_->hv8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) for (int x = 0; x < Width(); ++x) ASSERT_EQ(out[y * kOutputStride + x], in[y * kInputStride + x]) << "(" << x << "," << y << ")"; } const int kNumFilterBanks = 4; const int kNumFilters = 16; TEST(ConvolveTest, FiltersWontSaturateWhenAddedPairwise) { for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { const InterpKernel *filters = vp9_get_interp_kernel(static_cast<INTERP_FILTER>(filter_bank)); for (int i = 0; i < kNumFilters; i++) { const int p0 = filters[i][0] + filters[i][1]; const int p1 = filters[i][2] + filters[i][3]; const int p2 = filters[i][4] + filters[i][5]; const int p3 = filters[i][6] + filters[i][7]; EXPECT_LE(p0, 128); EXPECT_LE(p1, 128); EXPECT_LE(p2, 128); EXPECT_LE(p3, 128); EXPECT_LE(p0 + p3, 128); EXPECT_LE(p0 + p3 + p1, 128); EXPECT_LE(p0 + p3 + p1 + p2, 128); EXPECT_EQ(p0 + p1 + p2 + p3, 128); } } } const int16_t kInvalidFilter[8] = { 0 }; TEST_P(ConvolveTest, MatchesReferenceSubpixelFilter) { uint8_t* const in = input(); uint8_t* const out = output(); uint8_t ref[kOutputStride * kMaxDimension]; for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { const InterpKernel *filters = vp9_get_interp_kernel(static_cast<INTERP_FILTER>(filter_bank)); const InterpKernel *const eighttap_smooth = vp9_get_interp_kernel(EIGHTTAP_SMOOTH); for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { filter_block2d_8_c(in, kInputStride, filters[filter_x], filters[filter_y], ref, kOutputStride, Width(), Height()); if (filters == eighttap_smooth || (filter_x && filter_y)) ASM_REGISTER_STATE_CHECK( UUT_->hv8_(in, kInputStride, out, kOutputStride, filters[filter_x], 16, filters[filter_y], 16, Width(), Height())); else if (filter_y) ASM_REGISTER_STATE_CHECK( UUT_->v8_(in, kInputStride, out, kOutputStride, kInvalidFilter, 16, filters[filter_y], 16, Width(), Height())); else ASM_REGISTER_STATE_CHECK( UUT_->h8_(in, kInputStride, out, kOutputStride, filters[filter_x], 16, kInvalidFilter, 16, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) for (int x = 0; x < Width(); ++x) ASSERT_EQ(ref[y * kOutputStride + x], out[y * kOutputStride + x]) << "mismatch at (" << x << "," << y << "), " << "filters (" << filter_bank << "," << filter_x << "," << filter_y << ")"; } } } } TEST_P(ConvolveTest, MatchesReferenceAveragingSubpixelFilter) { uint8_t* const in = input(); uint8_t* const out = output(); uint8_t ref[kOutputStride * kMaxDimension]; // Populate ref and out with some random data ::libvpx_test::ACMRandom prng; for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) { const uint8_t r = prng.Rand8Extremes(); out[y * kOutputStride + x] = r; ref[y * kOutputStride + x] = r; } } for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { const InterpKernel *filters = vp9_get_interp_kernel(static_cast<INTERP_FILTER>(filter_bank)); const InterpKernel *const eighttap_smooth = vp9_get_interp_kernel(EIGHTTAP_SMOOTH); for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { filter_average_block2d_8_c(in, kInputStride, filters[filter_x], filters[filter_y], ref, kOutputStride, Width(), Height()); if (filters == eighttap_smooth || (filter_x && filter_y)) ASM_REGISTER_STATE_CHECK( UUT_->hv8_avg_(in, kInputStride, out, kOutputStride, filters[filter_x], 16, filters[filter_y], 16, Width(), Height())); else if (filter_y) ASM_REGISTER_STATE_CHECK( UUT_->v8_avg_(in, kInputStride, out, kOutputStride, filters[filter_x], 16, filters[filter_y], 16, Width(), Height())); else ASM_REGISTER_STATE_CHECK( UUT_->h8_avg_(in, kInputStride, out, kOutputStride, filters[filter_x], 16, filters[filter_y], 16, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) for (int x = 0; x < Width(); ++x) ASSERT_EQ(ref[y * kOutputStride + x], out[y * kOutputStride + x]) << "mismatch at (" << x << "," << y << "), " << "filters (" << filter_bank << "," << filter_x << "," << filter_y << ")"; } } } } DECLARE_ALIGNED(256, const int16_t, kChangeFilters[16][8]) = { { 0, 0, 0, 0, 0, 0, 0, 128}, { 0, 0, 0, 0, 0, 0, 128}, { 0, 0, 0, 0, 0, 128}, { 0, 0, 0, 0, 128}, { 0, 0, 0, 128}, { 0, 0, 128}, { 0, 128}, { 128}, { 0, 0, 0, 0, 0, 0, 0, 128}, { 0, 0, 0, 0, 0, 0, 128}, { 0, 0, 0, 0, 0, 128}, { 0, 0, 0, 0, 128}, { 0, 0, 0, 128}, { 0, 0, 128}, { 0, 128}, { 128} }; /* This test exercises the horizontal and vertical filter functions. */ TEST_P(ConvolveTest, ChangeFilterWorks) { uint8_t* const in = input(); uint8_t* const out = output(); /* Assume that the first input sample is at the 8/16th position. */ const int kInitialSubPelOffset = 8; /* Filters are 8-tap, so the first filter tap will be applied to the pixel * at position -3 with respect to the current filtering position. Since * kInitialSubPelOffset is set to 8, we first select sub-pixel filter 8, * which is non-zero only in the last tap. So, applying the filter at the * current input position will result in an output equal to the pixel at * offset +4 (-3 + 7) with respect to the current filtering position. */ const int kPixelSelected = 4; /* Assume that each output pixel requires us to step on by 17/16th pixels in * the input. */ const int kInputPixelStep = 17; /* The filters are setup in such a way that the expected output produces * sets of 8 identical output samples. As the filter position moves to the * next 1/16th pixel position the only active (=128) filter tap moves one * position to the left, resulting in the same input pixel being replicated * in to the output for 8 consecutive samples. After each set of 8 positions * the filters select a different input pixel. kFilterPeriodAdjust below * computes which input pixel is written to the output for a specified * x or y position. */ /* Test the horizontal filter. */ ASM_REGISTER_STATE_CHECK( UUT_->h8_(in, kInputStride, out, kOutputStride, kChangeFilters[kInitialSubPelOffset], kInputPixelStep, NULL, 0, Width(), Height())); for (int x = 0; x < Width(); ++x) { const int kFilterPeriodAdjust = (x >> 3) << 3; const int ref_x = kPixelSelected + ((kInitialSubPelOffset + kFilterPeriodAdjust * kInputPixelStep) >> SUBPEL_BITS); ASSERT_EQ(in[ref_x], out[x]) << "x == " << x << "width = " << Width(); } /* Test the vertical filter. */ ASM_REGISTER_STATE_CHECK( UUT_->v8_(in, kInputStride, out, kOutputStride, NULL, 0, kChangeFilters[kInitialSubPelOffset], kInputPixelStep, Width(), Height())); for (int y = 0; y < Height(); ++y) { const int kFilterPeriodAdjust = (y >> 3) << 3; const int ref_y = kPixelSelected + ((kInitialSubPelOffset + kFilterPeriodAdjust * kInputPixelStep) >> SUBPEL_BITS); ASSERT_EQ(in[ref_y * kInputStride], out[y * kInputStride]) << "y == " << y; } /* Test the horizontal and vertical filters in combination. */ ASM_REGISTER_STATE_CHECK( UUT_->hv8_(in, kInputStride, out, kOutputStride, kChangeFilters[kInitialSubPelOffset], kInputPixelStep, kChangeFilters[kInitialSubPelOffset], kInputPixelStep, Width(), Height())); for (int y = 0; y < Height(); ++y) { const int kFilterPeriodAdjustY = (y >> 3) << 3; const int ref_y = kPixelSelected + ((kInitialSubPelOffset + kFilterPeriodAdjustY * kInputPixelStep) >> SUBPEL_BITS); for (int x = 0; x < Width(); ++x) { const int kFilterPeriodAdjustX = (x >> 3) << 3; const int ref_x = kPixelSelected + ((kInitialSubPelOffset + kFilterPeriodAdjustX * kInputPixelStep) >> SUBPEL_BITS); ASSERT_EQ(in[ref_y * kInputStride + ref_x], out[y * kOutputStride + x]) << "x == " << x << ", y == " << y; } } } /* This test exercises that enough rows and columns are filtered with every possible initial fractional positions and scaling steps. */ TEST_P(ConvolveTest, CheckScalingFiltering) { uint8_t* const in = input(); uint8_t* const out = output(); const InterpKernel *const eighttap = vp9_get_interp_kernel(EIGHTTAP); SetConstantInput(127); for (int frac = 0; frac < 16; ++frac) { for (int step = 1; step <= 32; ++step) { /* Test the horizontal and vertical filters in combination. */ ASM_REGISTER_STATE_CHECK(UUT_->hv8_(in, kInputStride, out, kOutputStride, eighttap[frac], step, eighttap[frac], step, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) { ASSERT_EQ(in[y * kInputStride + x], out[y * kOutputStride + x]) << "x == " << x << ", y == " << y << ", frac == " << frac << ", step == " << step; } } } } } using std::tr1::make_tuple; const ConvolveFunctions convolve8_c( vp9_convolve8_horiz_c, vp9_convolve8_avg_horiz_c, vp9_convolve8_vert_c, vp9_convolve8_avg_vert_c, vp9_convolve8_c, vp9_convolve8_avg_c); INSTANTIATE_TEST_CASE_P(C, ConvolveTest, ::testing::Values( make_tuple(4, 4, &convolve8_c), make_tuple(8, 4, &convolve8_c), make_tuple(4, 8, &convolve8_c), make_tuple(8, 8, &convolve8_c), make_tuple(16, 8, &convolve8_c), make_tuple(8, 16, &convolve8_c), make_tuple(16, 16, &convolve8_c), make_tuple(32, 16, &convolve8_c), make_tuple(16, 32, &convolve8_c), make_tuple(32, 32, &convolve8_c), make_tuple(64, 32, &convolve8_c), make_tuple(32, 64, &convolve8_c), make_tuple(64, 64, &convolve8_c))); #if HAVE_SSE2 const ConvolveFunctions convolve8_sse2( vp9_convolve8_horiz_sse2, vp9_convolve8_avg_horiz_sse2, vp9_convolve8_vert_sse2, vp9_convolve8_avg_vert_sse2, vp9_convolve8_sse2, vp9_convolve8_avg_sse2); INSTANTIATE_TEST_CASE_P(SSE2, ConvolveTest, ::testing::Values( make_tuple(4, 4, &convolve8_sse2), make_tuple(8, 4, &convolve8_sse2), make_tuple(4, 8, &convolve8_sse2), make_tuple(8, 8, &convolve8_sse2), make_tuple(16, 8, &convolve8_sse2), make_tuple(8, 16, &convolve8_sse2), make_tuple(16, 16, &convolve8_sse2), make_tuple(32, 16, &convolve8_sse2), make_tuple(16, 32, &convolve8_sse2), make_tuple(32, 32, &convolve8_sse2), make_tuple(64, 32, &convolve8_sse2), make_tuple(32, 64, &convolve8_sse2), make_tuple(64, 64, &convolve8_sse2))); #endif #if HAVE_SSSE3 const ConvolveFunctions convolve8_ssse3( vp9_convolve8_horiz_ssse3, vp9_convolve8_avg_horiz_ssse3, vp9_convolve8_vert_ssse3, vp9_convolve8_avg_vert_ssse3, vp9_convolve8_ssse3, vp9_convolve8_avg_ssse3); INSTANTIATE_TEST_CASE_P(SSSE3, ConvolveTest, ::testing::Values( make_tuple(4, 4, &convolve8_ssse3), make_tuple(8, 4, &convolve8_ssse3), make_tuple(4, 8, &convolve8_ssse3), make_tuple(8, 8, &convolve8_ssse3), make_tuple(16, 8, &convolve8_ssse3), make_tuple(8, 16, &convolve8_ssse3), make_tuple(16, 16, &convolve8_ssse3), make_tuple(32, 16, &convolve8_ssse3), make_tuple(16, 32, &convolve8_ssse3), make_tuple(32, 32, &convolve8_ssse3), make_tuple(64, 32, &convolve8_ssse3), make_tuple(32, 64, &convolve8_ssse3), make_tuple(64, 64, &convolve8_ssse3))); #endif #if HAVE_AVX2 // TODO(jzern): these prototypes can be removed after the avx2 versions are // reenabled in vp9_rtcd_defs.pl. extern "C" { void vp9_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h); void vp9_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h); void vp9_convolve8_avx2(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h); } const ConvolveFunctions convolve8_avx2( vp9_convolve8_horiz_avx2, vp9_convolve8_avg_horiz_ssse3, vp9_convolve8_vert_avx2, vp9_convolve8_avg_vert_ssse3, vp9_convolve8_avx2, vp9_convolve8_avg_ssse3); INSTANTIATE_TEST_CASE_P(AVX2, ConvolveTest, ::testing::Values( make_tuple(4, 4, &convolve8_avx2), make_tuple(8, 4, &convolve8_avx2), make_tuple(4, 8, &convolve8_avx2), make_tuple(8, 8, &convolve8_avx2), make_tuple(8, 16, &convolve8_avx2))); INSTANTIATE_TEST_CASE_P(DISABLED_AVX2, ConvolveTest, ::testing::Values( make_tuple(16, 8, &convolve8_avx2), make_tuple(16, 16, &convolve8_avx2), make_tuple(32, 16, &convolve8_avx2), make_tuple(16, 32, &convolve8_avx2), make_tuple(32, 32, &convolve8_avx2), make_tuple(64, 32, &convolve8_avx2), make_tuple(32, 64, &convolve8_avx2), make_tuple(64, 64, &convolve8_avx2))); #endif #if HAVE_NEON_ASM const ConvolveFunctions convolve8_neon( vp9_convolve8_horiz_neon, vp9_convolve8_avg_horiz_neon, vp9_convolve8_vert_neon, vp9_convolve8_avg_vert_neon, vp9_convolve8_neon, vp9_convolve8_avg_neon); INSTANTIATE_TEST_CASE_P(NEON, ConvolveTest, ::testing::Values( make_tuple(4, 4, &convolve8_neon), make_tuple(8, 4, &convolve8_neon), make_tuple(4, 8, &convolve8_neon), make_tuple(8, 8, &convolve8_neon), make_tuple(16, 8, &convolve8_neon), make_tuple(8, 16, &convolve8_neon), make_tuple(16, 16, &convolve8_neon), make_tuple(32, 16, &convolve8_neon), make_tuple(16, 32, &convolve8_neon), make_tuple(32, 32, &convolve8_neon), make_tuple(64, 32, &convolve8_neon), make_tuple(32, 64, &convolve8_neon), make_tuple(64, 64, &convolve8_neon))); #endif #if HAVE_DSPR2 const ConvolveFunctions convolve8_dspr2( vp9_convolve8_horiz_dspr2, vp9_convolve8_avg_horiz_dspr2, vp9_convolve8_vert_dspr2, vp9_convolve8_avg_vert_dspr2, vp9_convolve8_dspr2, vp9_convolve8_avg_dspr2); INSTANTIATE_TEST_CASE_P(DSPR2, ConvolveTest, ::testing::Values( make_tuple(4, 4, &convolve8_dspr2), make_tuple(8, 4, &convolve8_dspr2), make_tuple(4, 8, &convolve8_dspr2), make_tuple(8, 8, &convolve8_dspr2), make_tuple(16, 8, &convolve8_dspr2), make_tuple(8, 16, &convolve8_dspr2), make_tuple(16, 16, &convolve8_dspr2), make_tuple(32, 16, &convolve8_dspr2), make_tuple(16, 32, &convolve8_dspr2), make_tuple(32, 32, &convolve8_dspr2), make_tuple(64, 32, &convolve8_dspr2), make_tuple(32, 64, &convolve8_dspr2), make_tuple(64, 64, &convolve8_dspr2))); #endif } // namespace