ref: f22a0bc57452a8478d8c927ced728ba5aaebc21e
dir: /vp9/encoder/x86/vp9_error_intrin_avx2.c/
/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Usee of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <immintrin.h> // AVX2 #include "./vp9_rtcd.h" #include "vpx/vpx_integer.h" int64_t vp9_block_error_avx2(const int16_t *coeff, const int16_t *dqcoeff, intptr_t block_size, int64_t *ssz) { __m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg; __m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi; __m256i sse_reg_64hi, ssz_reg_64hi; __m128i sse_reg128, ssz_reg128; int64_t sse; int i; const __m256i zero_reg = _mm256_set1_epi16(0); // init sse and ssz registerd to zero sse_reg = _mm256_set1_epi16(0); ssz_reg = _mm256_set1_epi16(0); for (i = 0 ; i < block_size ; i+= 16) { // load 32 bytes from coeff and dqcoeff coeff_reg = _mm256_loadu_si256((const __m256i *)(coeff + i)); dqcoeff_reg = _mm256_loadu_si256((const __m256i *)(dqcoeff + i)); // dqcoeff - coeff dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg); // madd (dqcoeff - coeff) dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg); // madd coeff coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg); // expand each double word of madd (dqcoeff - coeff) to quad word exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg); exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg, zero_reg); // expand each double word of madd (coeff) to quad word exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg, zero_reg); exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg, zero_reg); // add each quad word of madd (dqcoeff - coeff) and madd (coeff) sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo); ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo); sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi); ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi); } // save the higher 64 bit of each 128 bit lane sse_reg_64hi = _mm256_srli_si256(sse_reg, 8); ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8); // add the higher 64 bit to the low 64 bit sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi); ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi); // add each 64 bit from each of the 128 bit lane of the 256 bit sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg), _mm256_extractf128_si256(sse_reg, 1)); ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg), _mm256_extractf128_si256(ssz_reg, 1)); // store the results _mm_storel_epi64((__m128i*)(&sse), sse_reg128); _mm_storel_epi64((__m128i*)(ssz), ssz_reg128); return sse; }