shithub: libvpx

ref: f7c386bab0e637dff65c3fe546a83e9564028aff
dir: /vpx_dsp/arm/quantize_neon.c/

View raw version
/*
 *  Copyright (c) 2017 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <arm_neon.h>
#include <assert.h>

#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/arm/mem_neon.h"

static INLINE void calculate_dqcoeff_and_store(const int16x8_t qcoeff,
                                               const int16x8_t dequant,
                                               tran_low_t *dqcoeff) {
  const int32x4_t dqcoeff_0 =
      vmull_s16(vget_low_s16(qcoeff), vget_low_s16(dequant));
  const int32x4_t dqcoeff_1 =
      vmull_s16(vget_high_s16(qcoeff), vget_high_s16(dequant));

#if CONFIG_VP9_HIGHBITDEPTH
  vst1q_s32(dqcoeff, dqcoeff_0);
  vst1q_s32(dqcoeff + 4, dqcoeff_1);
#else
  vst1q_s16(dqcoeff, vcombine_s16(vmovn_s32(dqcoeff_0), vmovn_s32(dqcoeff_1)));
#endif  // CONFIG_VP9_HIGHBITDEPTH
}

void vpx_quantize_b_neon(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                         int skip_block, const int16_t *zbin_ptr,
                         const int16_t *round_ptr, const int16_t *quant_ptr,
                         const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
                         tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr,
                         uint16_t *eob_ptr, const int16_t *scan,
                         const int16_t *iscan) {
  const int16x8_t one = vdupq_n_s16(1);
  const int16x8_t neg_one = vdupq_n_s16(-1);
  uint16x8_t eob_max;
  (void)scan;
  (void)skip_block;
  assert(!skip_block);

  // Process first 8 values which include a dc component.
  {
    // Only the first element of each vector is DC.
    const int16x8_t zbin = vld1q_s16(zbin_ptr);
    const int16x8_t round = vld1q_s16(round_ptr);
    const int16x8_t quant = vld1q_s16(quant_ptr);
    const int16x8_t quant_shift = vld1q_s16(quant_shift_ptr);
    const int16x8_t dequant = vld1q_s16(dequant_ptr);
    // Add one because the eob does not index from 0.
    const uint16x8_t v_iscan =
        vreinterpretq_u16_s16(vaddq_s16(vld1q_s16(iscan), one));

    const int16x8_t coeff = load_tran_low_to_s16q(coeff_ptr);
    const int16x8_t coeff_sign = vshrq_n_s16(coeff, 15);
    const int16x8_t coeff_abs = vabsq_s16(coeff);

    const int16x8_t zbin_mask =
        vreinterpretq_s16_u16(vcgeq_s16(coeff_abs, zbin));

    const int16x8_t rounded = vqaddq_s16(coeff_abs, round);

    // (round * quant * 2) >> 16 >> 1 == (round * quant) >> 16
    int16x8_t qcoeff = vshrq_n_s16(vqdmulhq_s16(rounded, quant), 1);

    qcoeff = vaddq_s16(qcoeff, rounded);

    // (qcoeff * quant_shift * 2) >> 16 >> 1 == (qcoeff * quant_shift) >> 16
    qcoeff = vshrq_n_s16(vqdmulhq_s16(qcoeff, quant_shift), 1);

    // Restore the sign bit.
    qcoeff = veorq_s16(qcoeff, coeff_sign);
    qcoeff = vsubq_s16(qcoeff, coeff_sign);

    qcoeff = vandq_s16(qcoeff, zbin_mask);

    // Set non-zero elements to -1 and use that to extract values for eob.
    eob_max = vandq_u16(vtstq_s16(qcoeff, neg_one), v_iscan);

    coeff_ptr += 8;
    iscan += 8;

    store_s16q_to_tran_low(qcoeff_ptr, qcoeff);
    qcoeff_ptr += 8;

    calculate_dqcoeff_and_store(qcoeff, dequant, dqcoeff_ptr);
    dqcoeff_ptr += 8;
  }

  n_coeffs -= 8;

  {
    const int16x8_t zbin = vdupq_n_s16(zbin_ptr[1]);
    const int16x8_t round = vdupq_n_s16(round_ptr[1]);
    const int16x8_t quant = vdupq_n_s16(quant_ptr[1]);
    const int16x8_t quant_shift = vdupq_n_s16(quant_shift_ptr[1]);
    const int16x8_t dequant = vdupq_n_s16(dequant_ptr[1]);

    do {
      // Add one because the eob is not its index.
      const uint16x8_t v_iscan =
          vreinterpretq_u16_s16(vaddq_s16(vld1q_s16(iscan), one));

      const int16x8_t coeff = load_tran_low_to_s16q(coeff_ptr);
      const int16x8_t coeff_sign = vshrq_n_s16(coeff, 15);
      const int16x8_t coeff_abs = vabsq_s16(coeff);

      const int16x8_t zbin_mask =
          vreinterpretq_s16_u16(vcgeq_s16(coeff_abs, zbin));

      const int16x8_t rounded = vqaddq_s16(coeff_abs, round);

      // (round * quant * 2) >> 16 >> 1 == (round * quant) >> 16
      int16x8_t qcoeff = vshrq_n_s16(vqdmulhq_s16(rounded, quant), 1);

      qcoeff = vaddq_s16(qcoeff, rounded);

      // (qcoeff * quant_shift * 2) >> 16 >> 1 == (qcoeff * quant_shift) >> 16
      qcoeff = vshrq_n_s16(vqdmulhq_s16(qcoeff, quant_shift), 1);

      // Restore the sign bit.
      qcoeff = veorq_s16(qcoeff, coeff_sign);
      qcoeff = vsubq_s16(qcoeff, coeff_sign);

      qcoeff = vandq_s16(qcoeff, zbin_mask);

      // Set non-zero elements to -1 and use that to extract values for eob.
      eob_max =
          vmaxq_u16(eob_max, vandq_u16(vtstq_s16(qcoeff, neg_one), v_iscan));

      coeff_ptr += 8;
      iscan += 8;

      store_s16q_to_tran_low(qcoeff_ptr, qcoeff);
      qcoeff_ptr += 8;

      calculate_dqcoeff_and_store(qcoeff, dequant, dqcoeff_ptr);
      dqcoeff_ptr += 8;

      n_coeffs -= 8;
    } while (n_coeffs > 0);
  }

#ifdef __aarch64__
  *eob_ptr = vmaxvq_u16(eob_max);
#else
  {
    const uint16x4_t eob_max_0 =
        vmax_u16(vget_low_u16(eob_max), vget_high_u16(eob_max));
    const uint16x4_t eob_max_1 = vpmax_u16(eob_max_0, eob_max_0);
    const uint16x4_t eob_max_2 = vpmax_u16(eob_max_1, eob_max_1);
    vst1_lane_u16(eob_ptr, eob_max_2, 0);
  }
#endif  // __aarch64__
}

static INLINE int32x4_t extract_sign_bit(int32x4_t a) {
  return vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_s32(a), 31));
}

static INLINE void calculate_dqcoeff_and_store_32x32(const int16x8_t qcoeff,
                                                     const int16x8_t dequant,
                                                     tran_low_t *dqcoeff) {
  int32x4_t dqcoeff_0 = vmull_s16(vget_low_s16(qcoeff), vget_low_s16(dequant));
  int32x4_t dqcoeff_1 =
      vmull_s16(vget_high_s16(qcoeff), vget_high_s16(dequant));

  // Add 1 if negative to round towards zero because the C uses division.
  dqcoeff_0 = vaddq_s32(dqcoeff_0, extract_sign_bit(dqcoeff_0));
  dqcoeff_1 = vaddq_s32(dqcoeff_1, extract_sign_bit(dqcoeff_1));

#if CONFIG_VP9_HIGHBITDEPTH
  dqcoeff_0 = vshrq_n_s32(dqcoeff_0, 1);
  dqcoeff_1 = vshrq_n_s32(dqcoeff_1, 1);
  vst1q_s32(dqcoeff, dqcoeff_0);
  vst1q_s32(dqcoeff + 4, dqcoeff_1);
#else
  vst1q_s16(dqcoeff,
            vcombine_s16(vshrn_n_s32(dqcoeff_0, 1), vshrn_n_s32(dqcoeff_1, 1)));
#endif  // CONFIG_VP9_HIGHBITDEPTH
}

// Main difference is that zbin values are halved before comparison and dqcoeff
// values are divided by 2. zbin is rounded but dqcoeff is not.
void vpx_quantize_b_32x32_neon(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                               int skip_block, const int16_t *zbin_ptr,
                               const int16_t *round_ptr,
                               const int16_t *quant_ptr,
                               const int16_t *quant_shift_ptr,
                               tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
                               const int16_t *dequant_ptr, uint16_t *eob_ptr,
                               const int16_t *scan, const int16_t *iscan) {
  const int16x8_t one = vdupq_n_s16(1);
  const int16x8_t neg_one = vdupq_n_s16(-1);
  uint16x8_t eob_max;
  int i;
  (void)scan;
  (void)n_coeffs;  // Because we will always calculate 32*32.
  (void)skip_block;
  assert(!skip_block);

  // Process first 8 values which include a dc component.
  {
    // Only the first element of each vector is DC.
    const int16x8_t zbin = vrshrq_n_s16(vld1q_s16(zbin_ptr), 1);
    const int16x8_t round = vrshrq_n_s16(vld1q_s16(round_ptr), 1);
    const int16x8_t quant = vld1q_s16(quant_ptr);
    const int16x8_t quant_shift = vld1q_s16(quant_shift_ptr);
    const int16x8_t dequant = vld1q_s16(dequant_ptr);
    // Add one because the eob does not index from 0.
    const uint16x8_t v_iscan =
        vreinterpretq_u16_s16(vaddq_s16(vld1q_s16(iscan), one));

    const int16x8_t coeff = load_tran_low_to_s16q(coeff_ptr);
    const int16x8_t coeff_sign = vshrq_n_s16(coeff, 15);
    const int16x8_t coeff_abs = vabsq_s16(coeff);

    const int16x8_t zbin_mask =
        vreinterpretq_s16_u16(vcgeq_s16(coeff_abs, zbin));

    const int16x8_t rounded = vqaddq_s16(coeff_abs, round);

    // (round * quant * 2) >> 16 >> 1 == (round * quant) >> 16
    int16x8_t qcoeff = vshrq_n_s16(vqdmulhq_s16(rounded, quant), 1);

    qcoeff = vaddq_s16(qcoeff, rounded);

    // (qcoeff * quant_shift * 2) >> 16 == (qcoeff * quant_shift) >> 15
    qcoeff = vqdmulhq_s16(qcoeff, quant_shift);

    // Restore the sign bit.
    qcoeff = veorq_s16(qcoeff, coeff_sign);
    qcoeff = vsubq_s16(qcoeff, coeff_sign);

    qcoeff = vandq_s16(qcoeff, zbin_mask);

    // Set non-zero elements to -1 and use that to extract values for eob.
    eob_max = vandq_u16(vtstq_s16(qcoeff, neg_one), v_iscan);

    coeff_ptr += 8;
    iscan += 8;

    store_s16q_to_tran_low(qcoeff_ptr, qcoeff);
    qcoeff_ptr += 8;

    calculate_dqcoeff_and_store_32x32(qcoeff, dequant, dqcoeff_ptr);
    dqcoeff_ptr += 8;
  }

  {
    const int16x8_t zbin = vrshrq_n_s16(vdupq_n_s16(zbin_ptr[1]), 1);
    const int16x8_t round = vrshrq_n_s16(vdupq_n_s16(round_ptr[1]), 1);
    const int16x8_t quant = vdupq_n_s16(quant_ptr[1]);
    const int16x8_t quant_shift = vdupq_n_s16(quant_shift_ptr[1]);
    const int16x8_t dequant = vdupq_n_s16(dequant_ptr[1]);

    for (i = 1; i < 32 * 32 / 8; ++i) {
      // Add one because the eob is not its index.
      const uint16x8_t v_iscan =
          vreinterpretq_u16_s16(vaddq_s16(vld1q_s16(iscan), one));

      const int16x8_t coeff = load_tran_low_to_s16q(coeff_ptr);
      const int16x8_t coeff_sign = vshrq_n_s16(coeff, 15);
      const int16x8_t coeff_abs = vabsq_s16(coeff);

      const int16x8_t zbin_mask =
          vreinterpretq_s16_u16(vcgeq_s16(coeff_abs, zbin));

      const int16x8_t rounded = vqaddq_s16(coeff_abs, round);

      // (round * quant * 2) >> 16 >> 1 == (round * quant) >> 16
      int16x8_t qcoeff = vshrq_n_s16(vqdmulhq_s16(rounded, quant), 1);

      qcoeff = vaddq_s16(qcoeff, rounded);

      // (qcoeff * quant_shift * 2) >> 16 == (qcoeff * quant_shift) >> 15
      qcoeff = vqdmulhq_s16(qcoeff, quant_shift);

      // Restore the sign bit.
      qcoeff = veorq_s16(qcoeff, coeff_sign);
      qcoeff = vsubq_s16(qcoeff, coeff_sign);

      qcoeff = vandq_s16(qcoeff, zbin_mask);

      // Set non-zero elements to -1 and use that to extract values for eob.
      eob_max =
          vmaxq_u16(eob_max, vandq_u16(vtstq_s16(qcoeff, neg_one), v_iscan));

      coeff_ptr += 8;
      iscan += 8;

      store_s16q_to_tran_low(qcoeff_ptr, qcoeff);
      qcoeff_ptr += 8;

      calculate_dqcoeff_and_store_32x32(qcoeff, dequant, dqcoeff_ptr);
      dqcoeff_ptr += 8;
    }
  }

#ifdef __aarch64__
  *eob_ptr = vmaxvq_u16(eob_max);
#else
  {
    const uint16x4_t eob_max_0 =
        vmax_u16(vget_low_u16(eob_max), vget_high_u16(eob_max));
    const uint16x4_t eob_max_1 = vpmax_u16(eob_max_0, eob_max_0);
    const uint16x4_t eob_max_2 = vpmax_u16(eob_max_1, eob_max_1);
    vst1_lane_u16(eob_ptr, eob_max_2, 0);
  }
#endif  // __aarch64__
}