ref: fbefe470bf3661f6b3035312388dcf4215fdd836
dir: /vp8/encoder/encodemb.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_dsp_rtcd.h" #include "vpx_config.h" #include "vp8_rtcd.h" #include "encodemb.h" #include "vp8/common/reconinter.h" #include "vp8/encoder/quantize.h" #include "tokenize.h" #include "vp8/common/invtrans.h" #include "vpx_mem/vpx_mem.h" #include "rdopt.h" void vp8_subtract_b(BLOCK *be, BLOCKD *bd, int pitch) { unsigned char *src_ptr = (*(be->base_src) + be->src); short *diff_ptr = be->src_diff; unsigned char *pred_ptr = bd->predictor; int src_stride = be->src_stride; vpx_subtract_block(4, 4, diff_ptr, pitch, src_ptr, src_stride, pred_ptr, pitch); } void vp8_subtract_mbuv(short *diff, unsigned char *usrc, unsigned char *vsrc, int src_stride, unsigned char *upred, unsigned char *vpred, int pred_stride) { short *udiff = diff + 256; short *vdiff = diff + 320; vpx_subtract_block(8, 8, udiff, 8, usrc, src_stride, upred, pred_stride); vpx_subtract_block(8, 8, vdiff, 8, vsrc, src_stride, vpred, pred_stride); } void vp8_subtract_mby(short *diff, unsigned char *src, int src_stride, unsigned char *pred, int pred_stride) { vpx_subtract_block(16, 16, diff, 16, src, src_stride, pred, pred_stride); } static void vp8_subtract_mb(MACROBLOCK *x) { BLOCK *b = &x->block[0]; vp8_subtract_mby(x->src_diff, *(b->base_src), b->src_stride, x->e_mbd.dst.y_buffer, x->e_mbd.dst.y_stride); vp8_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->src.uv_stride, x->e_mbd.dst.u_buffer, x->e_mbd.dst.v_buffer, x->e_mbd.dst.uv_stride); } static void build_dcblock(MACROBLOCK *x) { short *src_diff_ptr = &x->src_diff[384]; int i; for (i = 0; i < 16; i++) { src_diff_ptr[i] = x->coeff[i * 16]; } } void vp8_transform_mbuv(MACROBLOCK *x) { int i; for (i = 16; i < 24; i += 2) { x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 16); } } void vp8_transform_intra_mby(MACROBLOCK *x) { int i; for (i = 0; i < 16; i += 2) { x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32); } /* build dc block from 16 y dc values */ build_dcblock(x); /* do 2nd order transform on the dc block */ x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8); } static void transform_mb(MACROBLOCK *x) { int i; for (i = 0; i < 16; i += 2) { x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32); } /* build dc block from 16 y dc values */ if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) build_dcblock(x); for (i = 16; i < 24; i += 2) { x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 16); } /* do 2nd order transform on the dc block */ if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8); } static void transform_mby(MACROBLOCK *x) { int i; for (i = 0; i < 16; i += 2) { x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32); } /* build dc block from 16 y dc values */ if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) { build_dcblock(x); x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8); } } #define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF ) typedef struct vp8_token_state vp8_token_state; struct vp8_token_state{ int rate; int error; signed char next; signed char token; short qc; }; /* TODO: experiments to find optimal multiple numbers */ #define Y1_RD_MULT 4 #define UV_RD_MULT 2 #define Y2_RD_MULT 16 static const int plane_rd_mult[4]= { Y1_RD_MULT, Y2_RD_MULT, UV_RD_MULT, Y1_RD_MULT }; static void optimize_b(MACROBLOCK *mb, int ib, int type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { BLOCK *b; BLOCKD *d; vp8_token_state tokens[17][2]; unsigned best_mask[2]; const short *dequant_ptr; const short *coeff_ptr; short *qcoeff_ptr; short *dqcoeff_ptr; int eob; int i0; int rc; int x; int sz = 0; int next; int rdmult; int rddiv; int final_eob; int rd_cost0; int rd_cost1; int rate0; int rate1; int error0; int error1; int t0; int t1; int best; int band; int pt; int i; int err_mult = plane_rd_mult[type]; b = &mb->block[ib]; d = &mb->e_mbd.block[ib]; dequant_ptr = d->dequant; coeff_ptr = b->coeff; qcoeff_ptr = d->qcoeff; dqcoeff_ptr = d->dqcoeff; i0 = !type; eob = *d->eob; /* Now set up a Viterbi trellis to evaluate alternative roundings. */ rdmult = mb->rdmult * err_mult; if(mb->e_mbd.mode_info_context->mbmi.ref_frame==INTRA_FRAME) rdmult = (rdmult * 9)>>4; rddiv = mb->rddiv; best_mask[0] = best_mask[1] = 0; /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = 16; tokens[eob][0].token = DCT_EOB_TOKEN; tokens[eob][0].qc = 0; *(tokens[eob] + 1) = *(tokens[eob] + 0); next = eob; for (i = eob; i-- > i0;) { int base_bits; int d2; int dx; rc = vp8_default_zig_zag1d[i]; x = qcoeff_ptr[rc]; /* Only add a trellis state for non-zero coefficients. */ if (x) { int shortcut=0; error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; t0 = (vp8_dct_value_tokens_ptr + x)->Token; /* Consider both possible successor states. */ if (next < 16) { band = vp8_coef_bands[i + 1]; pt = vp8_prev_token_class[t0]; rate0 += mb->token_costs[type][band][pt][tokens[next][0].token]; rate1 += mb->token_costs[type][band][pt][tokens[next][1].token]; } rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); if (rd_cost0 == rd_cost1) { rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0); rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1); } /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp8_dct_value_cost_ptr + x); dx = dqcoeff_ptr[rc] - coeff_ptr[rc]; d2 = dx*dx; tokens[i][0].rate = base_bits + (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].token = t0; tokens[i][0].qc = x; best_mask[0] |= best << i; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; if((abs(x)*dequant_ptr[rc]>abs(coeff_ptr[rc])) && (abs(x)*dequant_ptr[rc]<abs(coeff_ptr[rc])+dequant_ptr[rc])) shortcut = 1; else shortcut = 0; if(shortcut) { sz = -(x < 0); x -= 2*sz + 1; } /* Consider both possible successor states. */ if (!x) { /* If we reduced this coefficient to zero, check to see if * we need to move the EOB back here. */ t0 = tokens[next][0].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; t1 = tokens[next][1].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; } else { t0=t1 = (vp8_dct_value_tokens_ptr + x)->Token; } if (next < 16) { band = vp8_coef_bands[i + 1]; if(t0!=DCT_EOB_TOKEN) { pt = vp8_prev_token_class[t0]; rate0 += mb->token_costs[type][band][pt][ tokens[next][0].token]; } if(t1!=DCT_EOB_TOKEN) { pt = vp8_prev_token_class[t1]; rate1 += mb->token_costs[type][band][pt][ tokens[next][1].token]; } } rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); if (rd_cost0 == rd_cost1) { rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0); rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1); } /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp8_dct_value_cost_ptr + x); if(shortcut) { dx -= (dequant_ptr[rc] + sz) ^ sz; d2 = dx*dx; } tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token =best?t1:t0; tokens[i][1].qc = x; best_mask[1] |= best << i; /* Finally, make this the new head of the trellis. */ next = i; } /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ else { band = vp8_coef_bands[i + 1]; t0 = tokens[next][0].token; t1 = tokens[next][1].token; /* Update the cost of each path if we're past the EOB token. */ if (t0 != DCT_EOB_TOKEN) { tokens[next][0].rate += mb->token_costs[type][band][0][t0]; tokens[next][0].token = ZERO_TOKEN; } if (t1 != DCT_EOB_TOKEN) { tokens[next][1].rate += mb->token_costs[type][band][0][t1]; tokens[next][1].token = ZERO_TOKEN; } /* Don't update next, because we didn't add a new node. */ } } /* Now pick the best path through the whole trellis. */ band = vp8_coef_bands[i + 1]; VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += mb->token_costs[type][band][pt][t0]; rate1 += mb->token_costs[type][band][pt][t1]; rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); if (rd_cost0 == rd_cost1) { rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0); rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1); } best = rd_cost1 < rd_cost0; final_eob = i0 - 1; for (i = next; i < eob; i = next) { x = tokens[i][best].qc; if (x) final_eob = i; rc = vp8_default_zig_zag1d[i]; qcoeff_ptr[rc] = x; dqcoeff_ptr[rc] = x * dequant_ptr[rc]; next = tokens[i][best].next; best = (best_mask[best] >> i) & 1; } final_eob++; *a = *l = (final_eob != !type); *d->eob = (char)final_eob; } static void check_reset_2nd_coeffs(MACROBLOCKD *x, int type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { int sum=0; int i; BLOCKD *bd = &x->block[24]; if(bd->dequant[0]>=35 && bd->dequant[1]>=35) return; for(i=0;i<(*bd->eob);i++) { int coef = bd->dqcoeff[vp8_default_zig_zag1d[i]]; sum+= (coef>=0)?coef:-coef; if(sum>=35) return; } /************************************************************************** our inverse hadamard transform effectively is weighted sum of all 16 inputs with weight either 1 or -1. It has a last stage scaling of (sum+3)>>3. And dc only idct is (dc+4)>>3. So if all the sums are between -35 and 29, the output after inverse wht and idct will be all zero. A sum of absolute value smaller than 35 guarantees all 16 different (+1/-1) weighted sums in wht fall between -35 and +35. **************************************************************************/ if(sum < 35) { for(i=0;i<(*bd->eob);i++) { int rc = vp8_default_zig_zag1d[i]; bd->qcoeff[rc]=0; bd->dqcoeff[rc]=0; } *bd->eob = 0; *a = *l = (*bd->eob != !type); } } static void optimize_mb(MACROBLOCK *x) { int b; int type; int has_2nd_order; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED && x->e_mbd.mode_info_context->mbmi.mode != SPLITMV); type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC; for (b = 0; b < 16; b++) { optimize_b(x, b, type, ta + vp8_block2above[b], tl + vp8_block2left[b]); } for (b = 16; b < 24; b++) { optimize_b(x, b, PLANE_TYPE_UV, ta + vp8_block2above[b], tl + vp8_block2left[b]); } if (has_2nd_order) { b=24; optimize_b(x, b, PLANE_TYPE_Y2, ta + vp8_block2above[b], tl + vp8_block2left[b]); check_reset_2nd_coeffs(&x->e_mbd, PLANE_TYPE_Y2, ta + vp8_block2above[b], tl + vp8_block2left[b]); } } void vp8_optimize_mby(MACROBLOCK *x) { int b; int type; int has_2nd_order; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; if (!x->e_mbd.above_context) return; if (!x->e_mbd.left_context) return; memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED && x->e_mbd.mode_info_context->mbmi.mode != SPLITMV); type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC; for (b = 0; b < 16; b++) { optimize_b(x, b, type, ta + vp8_block2above[b], tl + vp8_block2left[b]); } if (has_2nd_order) { b=24; optimize_b(x, b, PLANE_TYPE_Y2, ta + vp8_block2above[b], tl + vp8_block2left[b]); check_reset_2nd_coeffs(&x->e_mbd, PLANE_TYPE_Y2, ta + vp8_block2above[b], tl + vp8_block2left[b]); } } void vp8_optimize_mbuv(MACROBLOCK *x) { int b; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; if (!x->e_mbd.above_context) return; if (!x->e_mbd.left_context) return; memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; for (b = 16; b < 24; b++) { optimize_b(x, b, PLANE_TYPE_UV, ta + vp8_block2above[b], tl + vp8_block2left[b]); } } void vp8_encode_inter16x16(MACROBLOCK *x) { vp8_build_inter_predictors_mb(&x->e_mbd); vp8_subtract_mb(x); transform_mb(x); vp8_quantize_mb(x); if (x->optimize) optimize_mb(x); } /* this funciton is used by first pass only */ void vp8_encode_inter16x16y(MACROBLOCK *x) { BLOCK *b = &x->block[0]; vp8_build_inter16x16_predictors_mby(&x->e_mbd, x->e_mbd.dst.y_buffer, x->e_mbd.dst.y_stride); vp8_subtract_mby(x->src_diff, *(b->base_src), b->src_stride, x->e_mbd.dst.y_buffer, x->e_mbd.dst.y_stride); transform_mby(x); vp8_quantize_mby(x); vp8_inverse_transform_mby(&x->e_mbd); }