shithub: libvpx

ref: fdc977afc6b431c7577e70d151f89ea726bcaf8f
dir: /examples/vp8_multi_resolution_encoder.c/

View raw version
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

/*
 * This is an example demonstrating multi-resolution encoding in VP8.
 * High-resolution input video is down-sampled to lower-resolutions. The
 * encoder then encodes the video and outputs multiple bitstreams with
 * different resolutions.
 *
 * This test also allows for settings temporal layers for each spatial layer.
 * Different number of temporal layers per spatial stream may be used.
 * Currently up to 3 temporal layers per spatial stream (encoder) are supported
 * in this test.
 */

#include "./vpx_config.h"

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include <sys/time.h>
#include "vpx_ports/vpx_timer.h"
#include "vpx/vpx_encoder.h"
#include "vpx/vp8cx.h"
#include "vpx_ports/mem_ops.h"
#include "../tools_common.h"
#define interface (vpx_codec_vp8_cx())
#define fourcc    0x30385056

void usage_exit(void) {
  exit(EXIT_FAILURE);
}

/*
 * The input video frame is downsampled several times to generate a multi-level
 * hierarchical structure. NUM_ENCODERS is defined as the number of encoding
 * levels required. For example, if the size of input video is 1280x720,
 * NUM_ENCODERS is 3, and down-sampling factor is 2, the encoder outputs 3
 * bitstreams with resolution of 1280x720(level 0), 640x360(level 1), and
 * 320x180(level 2) respectively.
 */

/* Number of encoders (spatial resolutions) used in this test. */
#define NUM_ENCODERS 3

/* Maximum number of temporal layers allowed for this test. */
#define MAX_NUM_TEMPORAL_LAYERS 3

/* This example uses the scaler function in libyuv. */
#include "third_party/libyuv/include/libyuv/basic_types.h"
#include "third_party/libyuv/include/libyuv/scale.h"
#include "third_party/libyuv/include/libyuv/cpu_id.h"

int (*read_frame_p)(FILE *f, vpx_image_t *img);

static int read_frame(FILE *f, vpx_image_t *img) {
    size_t nbytes, to_read;
    int    res = 1;

    to_read = img->w*img->h*3/2;
    nbytes = fread(img->planes[0], 1, to_read, f);
    if(nbytes != to_read) {
        res = 0;
        if(nbytes > 0)
            printf("Warning: Read partial frame. Check your width & height!\n");
    }
    return res;
}

static int read_frame_by_row(FILE *f, vpx_image_t *img) {
    size_t nbytes, to_read;
    int    res = 1;
    int plane;

    for (plane = 0; plane < 3; plane++)
    {
        unsigned char *ptr;
        int w = (plane ? (1 + img->d_w) / 2 : img->d_w);
        int h = (plane ? (1 + img->d_h) / 2 : img->d_h);
        int r;

        /* Determine the correct plane based on the image format. The for-loop
         * always counts in Y,U,V order, but this may not match the order of
         * the data on disk.
         */
        switch (plane)
        {
        case 1:
            ptr = img->planes[img->fmt==VPX_IMG_FMT_YV12? VPX_PLANE_V : VPX_PLANE_U];
            break;
        case 2:
            ptr = img->planes[img->fmt==VPX_IMG_FMT_YV12?VPX_PLANE_U : VPX_PLANE_V];
            break;
        default:
            ptr = img->planes[plane];
        }

        for (r = 0; r < h; r++)
        {
            to_read = w;

            nbytes = fread(ptr, 1, to_read, f);
            if(nbytes != to_read) {
                res = 0;
                if(nbytes > 0)
                    printf("Warning: Read partial frame. Check your width & height!\n");
                break;
            }

            ptr += img->stride[plane];
        }
        if (!res)
            break;
    }

    return res;
}

static void write_ivf_file_header(FILE *outfile,
                                  const vpx_codec_enc_cfg_t *cfg,
                                  int frame_cnt) {
    char header[32];

    if(cfg->g_pass != VPX_RC_ONE_PASS && cfg->g_pass != VPX_RC_LAST_PASS)
        return;
    header[0] = 'D';
    header[1] = 'K';
    header[2] = 'I';
    header[3] = 'F';
    mem_put_le16(header+4,  0);                   /* version */
    mem_put_le16(header+6,  32);                  /* headersize */
    mem_put_le32(header+8,  fourcc);              /* headersize */
    mem_put_le16(header+12, cfg->g_w);            /* width */
    mem_put_le16(header+14, cfg->g_h);            /* height */
    mem_put_le32(header+16, cfg->g_timebase.den); /* rate */
    mem_put_le32(header+20, cfg->g_timebase.num); /* scale */
    mem_put_le32(header+24, frame_cnt);           /* length */
    mem_put_le32(header+28, 0);                   /* unused */

    (void) fwrite(header, 1, 32, outfile);
}

static void write_ivf_frame_header(FILE *outfile,
                                   const vpx_codec_cx_pkt_t *pkt)
{
    char             header[12];
    vpx_codec_pts_t  pts;

    if(pkt->kind != VPX_CODEC_CX_FRAME_PKT)
        return;

    pts = pkt->data.frame.pts;
    mem_put_le32(header, pkt->data.frame.sz);
    mem_put_le32(header+4, pts&0xFFFFFFFF);
    mem_put_le32(header+8, pts >> 32);

    (void) fwrite(header, 1, 12, outfile);
}

/* Temporal scaling parameters */
/* This sets all the temporal layer parameters given |num_temporal_layers|,
 * including the target bit allocation across temporal layers. Bit allocation
 * parameters will be passed in as user parameters in another version.
 */
static void set_temporal_layer_pattern(int num_temporal_layers,
                                       vpx_codec_enc_cfg_t *cfg,
                                       int bitrate,
                                       int *layer_flags)
{
    assert(num_temporal_layers <= MAX_NUM_TEMPORAL_LAYERS);
    switch (num_temporal_layers)
    {
    case 1:
    {
        /* 1-layer */
        cfg->ts_number_layers     = 1;
        cfg->ts_periodicity       = 1;
        cfg->ts_rate_decimator[0] = 1;
        cfg->ts_layer_id[0] = 0;
        cfg->ts_target_bitrate[0] = bitrate;

        // Update L only.
        layer_flags[0] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
        break;
    }

    case 2:
    {
        /* 2-layers, with sync point at first frame of layer 1. */
        cfg->ts_number_layers     = 2;
        cfg->ts_periodicity       = 2;
        cfg->ts_rate_decimator[0] = 2;
        cfg->ts_rate_decimator[1] = 1;
        cfg->ts_layer_id[0] = 0;
        cfg->ts_layer_id[1] = 1;
        // Use 60/40 bit allocation as example.
        cfg->ts_target_bitrate[0] = 0.6f * bitrate;
        cfg->ts_target_bitrate[1] = bitrate;

        /* 0=L, 1=GF */
        // ARF is used as predictor for all frames, and is only updated on
        // key frame. Sync point every 8 frames.

        // Layer 0: predict from L and ARF, update L and G.
        layer_flags[0] = VP8_EFLAG_NO_REF_GF |
                         VP8_EFLAG_NO_UPD_ARF;

        // Layer 1: sync point: predict from L and ARF, and update G.
        layer_flags[1] = VP8_EFLAG_NO_REF_GF |
                         VP8_EFLAG_NO_UPD_LAST |
                         VP8_EFLAG_NO_UPD_ARF;

        // Layer 0, predict from L and ARF, update L.
        layer_flags[2] = VP8_EFLAG_NO_REF_GF  |
                         VP8_EFLAG_NO_UPD_GF  |
                         VP8_EFLAG_NO_UPD_ARF;

        // Layer 1: predict from L, G and ARF, and update G.
        layer_flags[3] = VP8_EFLAG_NO_UPD_ARF |
                         VP8_EFLAG_NO_UPD_LAST |
                         VP8_EFLAG_NO_UPD_ENTROPY;

        // Layer 0
        layer_flags[4] = layer_flags[2];

        // Layer 1
        layer_flags[5] = layer_flags[3];

        // Layer 0
        layer_flags[6] = layer_flags[4];

        // Layer 1
        layer_flags[7] = layer_flags[5];
        break;
    }

    case 3:
    default:
    {
        // 3-layers structure where ARF is used as predictor for all frames,
        // and is only updated on key frame.
        // Sync points for layer 1 and 2 every 8 frames.
        cfg->ts_number_layers     = 3;
        cfg->ts_periodicity       = 4;
        cfg->ts_rate_decimator[0] = 4;
        cfg->ts_rate_decimator[1] = 2;
        cfg->ts_rate_decimator[2] = 1;
        cfg->ts_layer_id[0] = 0;
        cfg->ts_layer_id[1] = 2;
        cfg->ts_layer_id[2] = 1;
        cfg->ts_layer_id[3] = 2;
        // Use 40/20/40 bit allocation as example.
        cfg->ts_target_bitrate[0] = 0.4f * bitrate;
        cfg->ts_target_bitrate[1] = 0.6f * bitrate;
        cfg->ts_target_bitrate[2] = bitrate;

        /* 0=L, 1=GF, 2=ARF */

        // Layer 0: predict from L and ARF; update L and G.
        layer_flags[0] =  VP8_EFLAG_NO_UPD_ARF |
                          VP8_EFLAG_NO_REF_GF;

        // Layer 2: sync point: predict from L and ARF; update none.
        layer_flags[1] = VP8_EFLAG_NO_REF_GF |
                         VP8_EFLAG_NO_UPD_GF |
                         VP8_EFLAG_NO_UPD_ARF |
                         VP8_EFLAG_NO_UPD_LAST |
                         VP8_EFLAG_NO_UPD_ENTROPY;

        // Layer 1: sync point: predict from L and ARF; update G.
        layer_flags[2] = VP8_EFLAG_NO_REF_GF |
                         VP8_EFLAG_NO_UPD_ARF |
                         VP8_EFLAG_NO_UPD_LAST;

        // Layer 2: predict from L, G, ARF; update none.
        layer_flags[3] = VP8_EFLAG_NO_UPD_GF |
                         VP8_EFLAG_NO_UPD_ARF |
                         VP8_EFLAG_NO_UPD_LAST |
                         VP8_EFLAG_NO_UPD_ENTROPY;

        // Layer 0: predict from L and ARF; update L.
        layer_flags[4] = VP8_EFLAG_NO_UPD_GF |
                         VP8_EFLAG_NO_UPD_ARF |
                         VP8_EFLAG_NO_REF_GF;

        // Layer 2: predict from L, G, ARF; update none.
        layer_flags[5] = layer_flags[3];

        // Layer 1: predict from L, G, ARF; update G.
        layer_flags[6] = VP8_EFLAG_NO_UPD_ARF |
                         VP8_EFLAG_NO_UPD_LAST;

        // Layer 2: predict from L, G, ARF; update none.
        layer_flags[7] = layer_flags[3];
        break;
    }
    }
}

/* The periodicity of the pattern given the number of temporal layers. */
static int periodicity_to_num_layers[MAX_NUM_TEMPORAL_LAYERS] = {1, 8, 8};

int main(int argc, char **argv)
{
    FILE                 *infile, *outfile[NUM_ENCODERS];
    FILE                 *downsampled_input[NUM_ENCODERS - 1];
    char                 filename[50];
    vpx_codec_ctx_t      codec[NUM_ENCODERS];
    vpx_codec_enc_cfg_t  cfg[NUM_ENCODERS];
    int                  frame_cnt = 0;
    vpx_image_t          raw[NUM_ENCODERS];
    vpx_codec_err_t      res[NUM_ENCODERS];

    int                  i;
    long                 width;
    long                 height;
    int                  length_frame;
    int                  frame_avail;
    int                  got_data;
    int                  flags = 0;
    int                  layer_id = 0;

    int                  layer_flags[VPX_TS_MAX_PERIODICITY * NUM_ENCODERS]
                                     = {0};
    int                  flag_periodicity;

    /*Currently, only realtime mode is supported in multi-resolution encoding.*/
    int                  arg_deadline = VPX_DL_REALTIME;

    /* Set show_psnr to 1/0 to show/not show PSNR. Choose show_psnr=0 if you
       don't need to know PSNR, which will skip PSNR calculation and save
       encoding time. */
    int                  show_psnr = 0;
    int                  key_frame_insert = 0;
    uint64_t             psnr_sse_total[NUM_ENCODERS] = {0};
    uint64_t             psnr_samples_total[NUM_ENCODERS] = {0};
    double               psnr_totals[NUM_ENCODERS][4] = {{0,0}};
    int                  psnr_count[NUM_ENCODERS] = {0};

    double               cx_time = 0;
    struct  timeval      tv1, tv2, difftv;

    /* Set the required target bitrates for each resolution level.
     * If target bitrate for highest-resolution level is set to 0,
     * (i.e. target_bitrate[0]=0), we skip encoding at that level.
     */
    unsigned int         target_bitrate[NUM_ENCODERS]={1000, 500, 100};

    /* Enter the frame rate of the input video */
    int                  framerate = 30;

    /* Set down-sampling factor for each resolution level.
       dsf[0] controls down sampling from level 0 to level 1;
       dsf[1] controls down sampling from level 1 to level 2;
       dsf[2] is not used. */
    vpx_rational_t dsf[NUM_ENCODERS] = {{2, 1}, {2, 1}, {1, 1}};

    /* Set the number of temporal layers for each encoder/resolution level,
     * starting from highest resoln down to lowest resoln. */
    unsigned int         num_temporal_layers[NUM_ENCODERS] = {3, 3, 3};

    if(argc!= (7 + 3 * NUM_ENCODERS))
        die("Usage: %s <width> <height> <frame_rate>  <infile> <outfile(s)> "
            "<rate_encoder(s)> <temporal_layer(s)> <key_frame_insert> <output psnr?> \n",
            argv[0]);

    printf("Using %s\n",vpx_codec_iface_name(interface));

    width = strtol(argv[1], NULL, 0);
    height = strtol(argv[2], NULL, 0);
    framerate = strtol(argv[3], NULL, 0);

    if(width < 16 || width%2 || height <16 || height%2)
        die("Invalid resolution: %ldx%ld", width, height);

    /* Open input video file for encoding */
    if(!(infile = fopen(argv[4], "rb")))
        die("Failed to open %s for reading", argv[4]);

    /* Open output file for each encoder to output bitstreams */
    for (i=0; i< NUM_ENCODERS; i++)
    {
        if(!target_bitrate[i])
        {
            outfile[i] = NULL;
            continue;
        }

        if(!(outfile[i] = fopen(argv[i+5], "wb")))
            die("Failed to open %s for writing", argv[i+4]);
    }

    // Bitrates per spatial layer: overwrite default rates above.
    for (i=0; i< NUM_ENCODERS; i++)
    {
        target_bitrate[i] = strtol(argv[NUM_ENCODERS + 5 + i], NULL, 0);
    }

    // Temporal layers per spatial layers: overwrite default settings above.
    for (i=0; i< NUM_ENCODERS; i++)
    {
        num_temporal_layers[i] = strtol(argv[2 * NUM_ENCODERS + 5 + i], NULL, 0);
        if (num_temporal_layers[i] < 1 || num_temporal_layers[i] > 3)
          die("Invalid temporal layers: %d, Must be 1, 2, or 3. \n",
              num_temporal_layers);
    }

    /* Open file to write out each spatially downsampled input stream. */
    for (i=0; i< NUM_ENCODERS - 1; i++)
    {
       // Highest resoln is encoder 0.
        if (sprintf(filename,"ds%d.yuv",NUM_ENCODERS - i) < 0)
        {
            return EXIT_FAILURE;
        }
        downsampled_input[i] = fopen(filename,"wb");
    }

    key_frame_insert = strtol(argv[3 * NUM_ENCODERS + 5], NULL, 0);

    show_psnr = strtol(argv[3 * NUM_ENCODERS + 6], NULL, 0);


    /* Populate default encoder configuration */
    for (i=0; i< NUM_ENCODERS; i++)
    {
        res[i] = vpx_codec_enc_config_default(interface, &cfg[i], 0);
        if(res[i]) {
            printf("Failed to get config: %s\n", vpx_codec_err_to_string(res[i]));
            return EXIT_FAILURE;
        }
    }

    /*
     * Update the default configuration according to needs of the application.
     */
    /* Highest-resolution encoder settings */
    cfg[0].g_w = width;
    cfg[0].g_h = height;
    cfg[0].rc_dropframe_thresh = 0;
    cfg[0].rc_end_usage = VPX_CBR;
    cfg[0].rc_resize_allowed = 0;
    cfg[0].rc_min_quantizer = 2;
    cfg[0].rc_max_quantizer = 56;
    cfg[0].rc_undershoot_pct = 100;
    cfg[0].rc_overshoot_pct = 15;
    cfg[0].rc_buf_initial_sz = 500;
    cfg[0].rc_buf_optimal_sz = 600;
    cfg[0].rc_buf_sz = 1000;
    cfg[0].g_error_resilient = 1;              /* Enable error resilient mode */
    cfg[0].g_lag_in_frames   = 0;

    /* Disable automatic keyframe placement */
    /* Note: These 3 settings are copied to all levels. But, except the lowest
     * resolution level, all other levels are set to VPX_KF_DISABLED internally.
     */
    cfg[0].kf_mode           = VPX_KF_AUTO;
    cfg[0].kf_min_dist = 3000;
    cfg[0].kf_max_dist = 3000;

    cfg[0].rc_target_bitrate = target_bitrate[0];       /* Set target bitrate */
    cfg[0].g_timebase.num = 1;                          /* Set fps */
    cfg[0].g_timebase.den = framerate;

    /* Other-resolution encoder settings */
    for (i=1; i< NUM_ENCODERS; i++)
    {
        memcpy(&cfg[i], &cfg[0], sizeof(vpx_codec_enc_cfg_t));

        cfg[i].rc_target_bitrate = target_bitrate[i];

        /* Note: Width & height of other-resolution encoders are calculated
         * from the highest-resolution encoder's size and the corresponding
         * down_sampling_factor.
         */
        {
            unsigned int iw = cfg[i-1].g_w*dsf[i-1].den + dsf[i-1].num - 1;
            unsigned int ih = cfg[i-1].g_h*dsf[i-1].den + dsf[i-1].num - 1;
            cfg[i].g_w = iw/dsf[i-1].num;
            cfg[i].g_h = ih/dsf[i-1].num;
        }

        /* Make width & height to be multiplier of 2. */
        // Should support odd size ???
        if((cfg[i].g_w)%2)cfg[i].g_w++;
        if((cfg[i].g_h)%2)cfg[i].g_h++;
    }


    // Set the number of threads per encode/spatial layer.
    // (1, 1, 1) means no encoder threading.
    cfg[0].g_threads = 2;
    cfg[1].g_threads = 1;
    cfg[2].g_threads = 1;

    /* Allocate image for each encoder */
    for (i=0; i< NUM_ENCODERS; i++)
        if(!vpx_img_alloc(&raw[i], VPX_IMG_FMT_I420, cfg[i].g_w, cfg[i].g_h, 32))
            die("Failed to allocate image", cfg[i].g_w, cfg[i].g_h);

    if (raw[0].stride[VPX_PLANE_Y] == raw[0].d_w)
        read_frame_p = read_frame;
    else
        read_frame_p = read_frame_by_row;

    for (i=0; i< NUM_ENCODERS; i++)
        if(outfile[i])
            write_ivf_file_header(outfile[i], &cfg[i], 0);

    /* Temporal layers settings */
    for ( i=0; i<NUM_ENCODERS; i++)
    {
        set_temporal_layer_pattern(num_temporal_layers[i],
                                   &cfg[i],
                                   cfg[i].rc_target_bitrate,
                                   &layer_flags[i * VPX_TS_MAX_PERIODICITY]);
    }

    /* Initialize multi-encoder */
    if(vpx_codec_enc_init_multi(&codec[0], interface, &cfg[0], NUM_ENCODERS,
                                (show_psnr ? VPX_CODEC_USE_PSNR : 0), &dsf[0]))
        die_codec(&codec[0], "Failed to initialize encoder");

    /* The extra encoding configuration parameters can be set as follows. */
    /* Set encoding speed */
    for ( i=0; i<NUM_ENCODERS; i++)
    {
        int speed = -6;
        /* Lower speed for the lowest resolution. */
        if (i == NUM_ENCODERS - 1) speed = -4;
        if(vpx_codec_control(&codec[i], VP8E_SET_CPUUSED, speed))
            die_codec(&codec[i], "Failed to set cpu_used");
    }

    /* Set static threshold = 1 for all encoders */
    for ( i=0; i<NUM_ENCODERS; i++)
    {
        if(vpx_codec_control(&codec[i], VP8E_SET_STATIC_THRESHOLD, 1))
            die_codec(&codec[i], "Failed to set static threshold");
    }

    /* Set NOISE_SENSITIVITY to do TEMPORAL_DENOISING */
    /* Enable denoising for the highest-resolution encoder. */
    if(vpx_codec_control(&codec[0], VP8E_SET_NOISE_SENSITIVITY, 1))
        die_codec(&codec[0], "Failed to set noise_sensitivity");
    for ( i=1; i< NUM_ENCODERS; i++)
    {
        if(vpx_codec_control(&codec[i], VP8E_SET_NOISE_SENSITIVITY, 0))
            die_codec(&codec[i], "Failed to set noise_sensitivity");
    }

    /* Set the number of token partitions */
    for ( i=0; i<NUM_ENCODERS; i++)
    {
        if(vpx_codec_control(&codec[i], VP8E_SET_TOKEN_PARTITIONS, 1))
            die_codec(&codec[i], "Failed to set static threshold");
    }

    /* Set the max intra target bitrate */
    for ( i=0; i<NUM_ENCODERS; i++)
    {
        unsigned int max_intra_size_pct =
            (int)(((double)cfg[0].rc_buf_optimal_sz * 0.5) * framerate / 10);
        if(vpx_codec_control(&codec[i], VP8E_SET_MAX_INTRA_BITRATE_PCT,
                             max_intra_size_pct))
            die_codec(&codec[i], "Failed to set static threshold");
       //printf("%d %d \n",i,max_intra_size_pct);
    }

    frame_avail = 1;
    got_data = 0;

    while(frame_avail || got_data)
    {
        vpx_codec_iter_t iter[NUM_ENCODERS]={NULL};
        const vpx_codec_cx_pkt_t *pkt[NUM_ENCODERS];

        flags = 0;
        frame_avail = read_frame_p(infile, &raw[0]);

        if(frame_avail)
        {
            for ( i=1; i<NUM_ENCODERS; i++)
            {
                /*Scale the image down a number of times by downsampling factor*/
                /* FilterMode 1 or 2 give better psnr than FilterMode 0. */
                I420Scale(raw[i-1].planes[VPX_PLANE_Y], raw[i-1].stride[VPX_PLANE_Y],
                          raw[i-1].planes[VPX_PLANE_U], raw[i-1].stride[VPX_PLANE_U],
                          raw[i-1].planes[VPX_PLANE_V], raw[i-1].stride[VPX_PLANE_V],
                          raw[i-1].d_w, raw[i-1].d_h,
                          raw[i].planes[VPX_PLANE_Y], raw[i].stride[VPX_PLANE_Y],
                          raw[i].planes[VPX_PLANE_U], raw[i].stride[VPX_PLANE_U],
                          raw[i].planes[VPX_PLANE_V], raw[i].stride[VPX_PLANE_V],
                          raw[i].d_w, raw[i].d_h, 1);
                /* Write out down-sampled input. */
                length_frame = cfg[i].g_w *  cfg[i].g_h *3/2;
                if (fwrite(raw[i].planes[0], 1, length_frame,
                           downsampled_input[NUM_ENCODERS - i - 1]) !=
                               length_frame)
                {
                    return EXIT_FAILURE;
                }
            }
        }

        /* Set the flags (reference and update) for all the encoders.*/
        for ( i=0; i<NUM_ENCODERS; i++)
        {
            layer_id = cfg[i].ts_layer_id[frame_cnt % cfg[i].ts_periodicity];
            flags = 0;
            flag_periodicity = periodicity_to_num_layers
                [num_temporal_layers[i] - 1];
            flags = layer_flags[i * VPX_TS_MAX_PERIODICITY +
                                frame_cnt % flag_periodicity];
            // Key frame flag for first frame.
            if (frame_cnt == 0)
            {
                flags |= VPX_EFLAG_FORCE_KF;
            }
            if (frame_cnt > 0 && frame_cnt == key_frame_insert)
            {
                flags = VPX_EFLAG_FORCE_KF;
            }

            vpx_codec_control(&codec[i], VP8E_SET_FRAME_FLAGS, flags);
            vpx_codec_control(&codec[i], VP8E_SET_TEMPORAL_LAYER_ID, layer_id);
        }

        gettimeofday(&tv1, NULL);
        /* Encode each frame at multi-levels */
        /* Note the flags must be set to 0 in the encode call if they are set
           for each frame with the vpx_codec_control(), as done above. */
        if(vpx_codec_encode(&codec[0], frame_avail? &raw[0] : NULL,
            frame_cnt, 1, 0, arg_deadline))
        {
            die_codec(&codec[0], "Failed to encode frame");
        }
        gettimeofday(&tv2, NULL);
        timersub(&tv2, &tv1, &difftv);
        cx_time += (double)(difftv.tv_sec * 1000000 + difftv.tv_usec);
        for (i=NUM_ENCODERS-1; i>=0 ; i--)
        {
            got_data = 0;
            while( (pkt[i] = vpx_codec_get_cx_data(&codec[i], &iter[i])) )
            {
                got_data = 1;
                switch(pkt[i]->kind) {
                    case VPX_CODEC_CX_FRAME_PKT:
                        write_ivf_frame_header(outfile[i], pkt[i]);
                        (void) fwrite(pkt[i]->data.frame.buf, 1,
                                      pkt[i]->data.frame.sz, outfile[i]);
                    break;
                    case VPX_CODEC_PSNR_PKT:
                        if (show_psnr)
                        {
                            int j;

                            psnr_sse_total[i] += pkt[i]->data.psnr.sse[0];
                            psnr_samples_total[i] += pkt[i]->data.psnr.samples[0];
                            for (j = 0; j < 4; j++)
                            {
                                psnr_totals[i][j] += pkt[i]->data.psnr.psnr[j];
                            }
                            psnr_count[i]++;
                        }

                        break;
                    default:
                        break;
                }
                printf(pkt[i]->kind == VPX_CODEC_CX_FRAME_PKT
                       && (pkt[i]->data.frame.flags & VPX_FRAME_IS_KEY)? "K":"");
                fflush(stdout);
            }
        }
        frame_cnt++;
    }
    printf("\n");
    printf("FPS for encoding %d %f %f \n", frame_cnt, (float)cx_time / 1000000,
           1000000 * (double)frame_cnt / (double)cx_time);

    fclose(infile);

    printf("Processed %ld frames.\n",(long int)frame_cnt-1);
    for (i=0; i< NUM_ENCODERS; i++)
    {
        /* Calculate PSNR and print it out */
        if ( (show_psnr) && (psnr_count[i]>0) )
        {
            int j;
            double ovpsnr = sse_to_psnr(psnr_samples_total[i], 255.0,
                                        psnr_sse_total[i]);

            fprintf(stderr, "\n ENC%d PSNR (Overall/Avg/Y/U/V)", i);

            fprintf(stderr, " %.3lf", ovpsnr);
            for (j = 0; j < 4; j++)
            {
                fprintf(stderr, " %.3lf", psnr_totals[i][j]/psnr_count[i]);
            }
        }

        if(vpx_codec_destroy(&codec[i]))
            die_codec(&codec[i], "Failed to destroy codec");

        vpx_img_free(&raw[i]);

        if(!outfile[i])
            continue;

        /* Try to rewrite the file header with the actual frame count */
        if(!fseek(outfile[i], 0, SEEK_SET))
            write_ivf_file_header(outfile[i], &cfg[i], frame_cnt-1);
        fclose(outfile[i]);
    }
    printf("\n");

    return EXIT_SUCCESS;
}