ref: fea1bd10a4d2005de5dc61cf227b8a44b96e6b24
dir: /vp8/encoder/bitstream.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp8/common/header.h" #include "encodemv.h" #include "vp8/common/entropymode.h" #include "vp8/common/findnearmv.h" #include "mcomp.h" #include "vp8/common/systemdependent.h" #include <assert.h> #include <stdio.h> #include <limits.h> #include "vpx/vpx_encoder.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/system_state.h" #include "bitstream.h" #include "defaultcoefcounts.h" #include "vp8/common/common.h" const int vp8cx_base_skip_false_prob[128] = { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 251, 248, 244, 240, 236, 232, 229, 225, 221, 217, 213, 208, 204, 199, 194, 190, 187, 183, 179, 175, 172, 168, 164, 160, 157, 153, 149, 145, 142, 138, 134, 130, 127, 124, 120, 117, 114, 110, 107, 104, 101, 98, 95, 92, 89, 86, 83, 80, 77, 74, 71, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32, 30, 28, 26, 24, 22, 20, 18, 16, }; #if defined(SECTIONBITS_OUTPUT) unsigned __int64 Sectionbits[500]; #endif #ifdef MODE_STATS int count_mb_seg[4] = { 0, 0, 0, 0 }; #endif static void update_mode(vp8_writer *const w, int n, vp8_token tok[/* n */], vp8_tree tree, vp8_prob Pnew[/* n-1 */], vp8_prob Pcur[/* n-1 */], unsigned int bct[/* n-1 */][2], const unsigned int num_events[/* n */]) { unsigned int new_b = 0, old_b = 0; int i = 0; vp8_tree_probs_from_distribution(n--, tok, tree, Pnew, bct, num_events, 256, 1); do { new_b += vp8_cost_branch(bct[i], Pnew[i]); old_b += vp8_cost_branch(bct[i], Pcur[i]); } while (++i < n); if (new_b + (n << 8) < old_b) { int j = 0; vp8_write_bit(w, 1); do { const vp8_prob p = Pnew[j]; vp8_write_literal(w, Pcur[j] = p ? p : 1, 8); } while (++j < n); } else vp8_write_bit(w, 0); } static void update_mbintra_mode_probs(VP8_COMP *cpi) { VP8_COMMON *const x = &cpi->common; vp8_writer *const w = cpi->bc; { vp8_prob Pnew[VP8_YMODES - 1]; unsigned int bct[VP8_YMODES - 1][2]; update_mode(w, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree, Pnew, x->fc.ymode_prob, bct, (unsigned int *)cpi->mb.ymode_count); } { vp8_prob Pnew[VP8_UV_MODES - 1]; unsigned int bct[VP8_UV_MODES - 1][2]; update_mode(w, VP8_UV_MODES, vp8_uv_mode_encodings, vp8_uv_mode_tree, Pnew, x->fc.uv_mode_prob, bct, (unsigned int *)cpi->mb.uv_mode_count); } } static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m); } static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m); } static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m); } static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m); } static void write_split(vp8_writer *bc, int x) { vp8_write_token(bc, vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + x); } void vp8_pack_tokens(vp8_writer *w, const TOKENEXTRA *p, int xcount) { const TOKENEXTRA *stop = p + xcount; unsigned int split; int shift; int count = w->count; unsigned int range = w->range; unsigned int lowvalue = w->lowvalue; while (p < stop) { const int t = p->Token; vp8_token *a = vp8_coef_encodings + t; const vp8_extra_bit_struct *b = vp8_extra_bits + t; int i = 0; const unsigned char *pp = p->context_tree; int v = a->value; int n = a->Len; if (p->skip_eob_node) { n--; i = 2; } do { const int bb = (v >> --n) & 1; split = 1 + (((range - 1) * pp[i >> 1]) >> 8); i = vp8_coef_tree[i + bb]; if (bb) { lowvalue += split; range = range - split; } else { range = split; } shift = vp8_norm[range]; range <<= shift; count += shift; if (count >= 0) { int offset = shift - count; if ((lowvalue << (offset - 1)) & 0x80000000) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } validate_buffer(w->buffer + w->pos, 1, w->buffer_end, w->error); w->buffer[w->pos++] = (lowvalue >> (24 - offset)); lowvalue <<= offset; shift = count; lowvalue &= 0xffffff; count -= 8; } lowvalue <<= shift; } while (n); if (b->base_val) { const int e = p->Extra, L = b->Len; if (L) { const unsigned char *proba = b->prob; const int v2 = e >> 1; int n2 = L; /* number of bits in v2, assumed nonzero */ i = 0; do { const int bb = (v2 >> --n2) & 1; split = 1 + (((range - 1) * proba[i >> 1]) >> 8); i = b->tree[i + bb]; if (bb) { lowvalue += split; range = range - split; } else { range = split; } shift = vp8_norm[range]; range <<= shift; count += shift; if (count >= 0) { int offset = shift - count; if ((lowvalue << (offset - 1)) & 0x80000000) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } validate_buffer(w->buffer + w->pos, 1, w->buffer_end, w->error); w->buffer[w->pos++] = (lowvalue >> (24 - offset)); lowvalue <<= offset; shift = count; lowvalue &= 0xffffff; count -= 8; } lowvalue <<= shift; } while (n2); } { split = (range + 1) >> 1; if (e & 1) { lowvalue += split; range = range - split; } else { range = split; } range <<= 1; if ((lowvalue & 0x80000000)) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } lowvalue <<= 1; if (!++count) { count = -8; validate_buffer(w->buffer + w->pos, 1, w->buffer_end, w->error); w->buffer[w->pos++] = (lowvalue >> 24); lowvalue &= 0xffffff; } } } ++p; } w->count = count; w->lowvalue = lowvalue; w->range = range; } static void write_partition_size(unsigned char *cx_data, int size) { signed char csize; csize = size & 0xff; *cx_data = csize; csize = (size >> 8) & 0xff; *(cx_data + 1) = csize; csize = (size >> 16) & 0xff; *(cx_data + 2) = csize; } static void pack_tokens_into_partitions(VP8_COMP *cpi, unsigned char *cx_data, unsigned char *cx_data_end, int num_part) { int i; unsigned char *ptr = cx_data; unsigned char *ptr_end = cx_data_end; vp8_writer *w; for (i = 0; i < num_part; ++i) { int mb_row; w = cpi->bc + i + 1; vp8_start_encode(w, ptr, ptr_end); for (mb_row = i; mb_row < cpi->common.mb_rows; mb_row += num_part) { const TOKENEXTRA *p = cpi->tplist[mb_row].start; const TOKENEXTRA *stop = cpi->tplist[mb_row].stop; int tokens = (int)(stop - p); vp8_pack_tokens(w, p, tokens); } vp8_stop_encode(w); ptr += w->pos; } } #if CONFIG_MULTITHREAD static void pack_mb_row_tokens(VP8_COMP *cpi, vp8_writer *w) { int mb_row; for (mb_row = 0; mb_row < cpi->common.mb_rows; ++mb_row) { const TOKENEXTRA *p = cpi->tplist[mb_row].start; const TOKENEXTRA *stop = cpi->tplist[mb_row].stop; int tokens = (int)(stop - p); vp8_pack_tokens(w, p, tokens); } } #endif // CONFIG_MULTITHREAD static void write_mv_ref(vp8_writer *w, MB_PREDICTION_MODE m, const vp8_prob *p) { assert(NEARESTMV <= m && m <= SPLITMV); vp8_write_token(w, vp8_mv_ref_tree, p, vp8_mv_ref_encoding_array + (m - NEARESTMV)); } static void write_sub_mv_ref(vp8_writer *w, B_PREDICTION_MODE m, const vp8_prob *p) { assert(LEFT4X4 <= m && m <= NEW4X4); vp8_write_token(w, vp8_sub_mv_ref_tree, p, vp8_sub_mv_ref_encoding_array + (m - LEFT4X4)); } static void write_mv(vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT *mvc) { MV e; e.row = mv->row - ref->as_mv.row; e.col = mv->col - ref->as_mv.col; vp8_encode_motion_vector(w, &e, mvc); } static void write_mb_features(vp8_writer *w, const MB_MODE_INFO *mi, const MACROBLOCKD *x) { /* Encode the MB segment id. */ if (x->segmentation_enabled && x->update_mb_segmentation_map) { switch (mi->segment_id) { case 0: vp8_write(w, 0, x->mb_segment_tree_probs[0]); vp8_write(w, 0, x->mb_segment_tree_probs[1]); break; case 1: vp8_write(w, 0, x->mb_segment_tree_probs[0]); vp8_write(w, 1, x->mb_segment_tree_probs[1]); break; case 2: vp8_write(w, 1, x->mb_segment_tree_probs[0]); vp8_write(w, 0, x->mb_segment_tree_probs[2]); break; case 3: vp8_write(w, 1, x->mb_segment_tree_probs[0]); vp8_write(w, 1, x->mb_segment_tree_probs[2]); break; /* TRAP.. This should not happen */ default: vp8_write(w, 0, x->mb_segment_tree_probs[0]); vp8_write(w, 0, x->mb_segment_tree_probs[1]); break; } } } void vp8_convert_rfct_to_prob(VP8_COMP *const cpi) { const int *const rfct = cpi->mb.count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; /* Calculate the probabilities used to code the ref frame based on usage */ if (!(cpi->prob_intra_coded = rf_intra * 255 / (rf_intra + rf_inter))) { cpi->prob_intra_coded = 1; } cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; if (!cpi->prob_last_coded) cpi->prob_last_coded = 1; cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; if (!cpi->prob_gf_coded) cpi->prob_gf_coded = 1; } static void pack_inter_mode_mvs(VP8_COMP *const cpi) { VP8_COMMON *const pc = &cpi->common; vp8_writer *const w = cpi->bc; const MV_CONTEXT *mvc = pc->fc.mvc; MODE_INFO *m = pc->mi; const int mis = pc->mode_info_stride; int mb_row = -1; int prob_skip_false = 0; cpi->mb.partition_info = cpi->mb.pi; vp8_convert_rfct_to_prob(cpi); if (pc->mb_no_coeff_skip) { int total_mbs = pc->mb_rows * pc->mb_cols; prob_skip_false = (total_mbs - cpi->mb.skip_true_count) * 256 / total_mbs; if (prob_skip_false <= 1) prob_skip_false = 1; if (prob_skip_false > 255) prob_skip_false = 255; cpi->prob_skip_false = prob_skip_false; vp8_write_literal(w, prob_skip_false, 8); } vp8_write_literal(w, cpi->prob_intra_coded, 8); vp8_write_literal(w, cpi->prob_last_coded, 8); vp8_write_literal(w, cpi->prob_gf_coded, 8); update_mbintra_mode_probs(cpi); vp8_write_mvprobs(cpi); while (++mb_row < pc->mb_rows) { int mb_col = -1; while (++mb_col < pc->mb_cols) { const MB_MODE_INFO *const mi = &m->mbmi; const MV_REFERENCE_FRAME rf = mi->ref_frame; const MB_PREDICTION_MODE mode = mi->mode; MACROBLOCKD *xd = &cpi->mb.e_mbd; /* Distance of Mb to the various image edges. * These specified to 8th pel as they are always compared to MV * values that are in 1/8th pel units */ xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; xd->mb_to_top_edge = -((mb_row * 16) << 3); xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; if (cpi->mb.e_mbd.update_mb_segmentation_map) { write_mb_features(w, mi, &cpi->mb.e_mbd); } if (pc->mb_no_coeff_skip) { vp8_encode_bool(w, m->mbmi.mb_skip_coeff, prob_skip_false); } if (rf == INTRA_FRAME) { vp8_write(w, 0, cpi->prob_intra_coded); write_ymode(w, mode, pc->fc.ymode_prob); if (mode == B_PRED) { int j = 0; do { write_bmode(w, m->bmi[j].as_mode, pc->fc.bmode_prob); } while (++j < 16); } write_uv_mode(w, mi->uv_mode, pc->fc.uv_mode_prob); } else { /* inter coded */ int_mv best_mv; vp8_prob mv_ref_p[VP8_MVREFS - 1]; vp8_write(w, 1, cpi->prob_intra_coded); if (rf == LAST_FRAME) vp8_write(w, 0, cpi->prob_last_coded); else { vp8_write(w, 1, cpi->prob_last_coded); vp8_write(w, (rf == GOLDEN_FRAME) ? 0 : 1, cpi->prob_gf_coded); } { int_mv n1, n2; int ct[4]; vp8_find_near_mvs(xd, m, &n1, &n2, &best_mv, ct, rf, cpi->common.ref_frame_sign_bias); vp8_clamp_mv2(&best_mv, xd); vp8_mv_ref_probs(mv_ref_p, ct); } write_mv_ref(w, mode, mv_ref_p); switch (mode) /* new, split require MVs */ { case NEWMV: write_mv(w, &mi->mv.as_mv, &best_mv, mvc); break; case SPLITMV: { int j = 0; #ifdef MODE_STATS ++count_mb_seg[mi->partitioning]; #endif write_split(w, mi->partitioning); do { B_PREDICTION_MODE blockmode; int_mv blockmv; const int *const L = vp8_mbsplits[mi->partitioning]; int k = -1; /* first block in subset j */ int mv_contz; int_mv leftmv, abovemv; blockmode = cpi->mb.partition_info->bmi[j].mode; blockmv = cpi->mb.partition_info->bmi[j].mv; while (j != L[++k]) { assert(k < 16); } leftmv.as_int = left_block_mv(m, k); abovemv.as_int = above_block_mv(m, k, mis); mv_contz = vp8_mv_cont(&leftmv, &abovemv); write_sub_mv_ref(w, blockmode, vp8_sub_mv_ref_prob2[mv_contz]); if (blockmode == NEW4X4) { write_mv(w, &blockmv.as_mv, &best_mv, (const MV_CONTEXT *)mvc); } } while (++j < cpi->mb.partition_info->count); break; } default: break; } } ++m; cpi->mb.partition_info++; } ++m; /* skip L prediction border */ cpi->mb.partition_info++; } } static void write_kfmodes(VP8_COMP *cpi) { vp8_writer *const bc = cpi->bc; const VP8_COMMON *const c = &cpi->common; /* const */ MODE_INFO *m = c->mi; int mb_row = -1; int prob_skip_false = 0; if (c->mb_no_coeff_skip) { int total_mbs = c->mb_rows * c->mb_cols; prob_skip_false = (total_mbs - cpi->mb.skip_true_count) * 256 / total_mbs; if (prob_skip_false <= 1) prob_skip_false = 1; if (prob_skip_false >= 255) prob_skip_false = 255; cpi->prob_skip_false = prob_skip_false; vp8_write_literal(bc, prob_skip_false, 8); } while (++mb_row < c->mb_rows) { int mb_col = -1; while (++mb_col < c->mb_cols) { const int ym = m->mbmi.mode; if (cpi->mb.e_mbd.update_mb_segmentation_map) { write_mb_features(bc, &m->mbmi, &cpi->mb.e_mbd); } if (c->mb_no_coeff_skip) { vp8_encode_bool(bc, m->mbmi.mb_skip_coeff, prob_skip_false); } kfwrite_ymode(bc, ym, vp8_kf_ymode_prob); if (ym == B_PRED) { const int mis = c->mode_info_stride; int i = 0; do { const B_PREDICTION_MODE A = above_block_mode(m, i, mis); const B_PREDICTION_MODE L = left_block_mode(m, i); const int bm = m->bmi[i].as_mode; write_bmode(bc, bm, vp8_kf_bmode_prob[A][L]); } while (++i < 16); } write_uv_mode(bc, (m++)->mbmi.uv_mode, vp8_kf_uv_mode_prob); } m++; /* skip L prediction border */ } } #if 0 /* This function is used for debugging probability trees. */ static void print_prob_tree(vp8_prob coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES]) { /* print coef probability tree */ int i,j,k,l; FILE* f = fopen("enc_tree_probs.txt", "a"); fprintf(f, "{\n"); for (i = 0; i < BLOCK_TYPES; ++i) { fprintf(f, " {\n"); for (j = 0; j < COEF_BANDS; ++j) { fprintf(f, " {\n"); for (k = 0; k < PREV_COEF_CONTEXTS; ++k) { fprintf(f, " {"); for (l = 0; l < ENTROPY_NODES; ++l) { fprintf(f, "%3u, ", (unsigned int)(coef_probs [i][j][k][l])); } fprintf(f, " }\n"); } fprintf(f, " }\n"); } fprintf(f, " }\n"); } fprintf(f, "}\n"); fclose(f); } #endif static void sum_probs_over_prev_coef_context( const unsigned int probs[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS], unsigned int *out) { int i, j; for (i = 0; i < MAX_ENTROPY_TOKENS; ++i) { for (j = 0; j < PREV_COEF_CONTEXTS; ++j) { const unsigned int tmp = out[i]; out[i] += probs[j][i]; /* check for wrap */ if (out[i] < tmp) out[i] = UINT_MAX; } } } static int prob_update_savings(const unsigned int *ct, const vp8_prob oldp, const vp8_prob newp, const vp8_prob upd) { const int old_b = vp8_cost_branch(ct, oldp); const int new_b = vp8_cost_branch(ct, newp); const int update_b = 8 + ((vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8); return old_b - new_b - update_b; } static int independent_coef_context_savings(VP8_COMP *cpi) { MACROBLOCK *const x = &cpi->mb; int savings = 0; int i = 0; do { int j = 0; do { int k = 0; unsigned int prev_coef_count_sum[MAX_ENTROPY_TOKENS] = { 0 }; int prev_coef_savings[MAX_ENTROPY_TOKENS] = { 0 }; const unsigned int(*probs)[MAX_ENTROPY_TOKENS]; /* Calculate new probabilities given the constraint that * they must be equal over the prev coef contexts */ probs = (const unsigned int(*)[MAX_ENTROPY_TOKENS])x->coef_counts[i][j]; /* Reset to default probabilities at key frames */ if (cpi->common.frame_type == KEY_FRAME) { probs = default_coef_counts[i][j]; } sum_probs_over_prev_coef_context(probs, prev_coef_count_sum); do { /* at every context */ /* calc probs and branch cts for this frame only */ int t = 0; /* token/prob index */ vp8_tree_probs_from_distribution( MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree, cpi->frame_coef_probs[i][j][k], cpi->frame_branch_ct[i][j][k], prev_coef_count_sum, 256, 1); do { const unsigned int *ct = cpi->frame_branch_ct[i][j][k][t]; const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t]; const vp8_prob oldp = cpi->common.fc.coef_probs[i][j][k][t]; const vp8_prob upd = vp8_coef_update_probs[i][j][k][t]; const int s = prob_update_savings(ct, oldp, newp, upd); if (cpi->common.frame_type != KEY_FRAME || (cpi->common.frame_type == KEY_FRAME && newp != oldp)) { prev_coef_savings[t] += s; } } while (++t < ENTROPY_NODES); } while (++k < PREV_COEF_CONTEXTS); k = 0; do { /* We only update probabilities if we can save bits, except * for key frames where we have to update all probabilities * to get the equal probabilities across the prev coef * contexts. */ if (prev_coef_savings[k] > 0 || cpi->common.frame_type == KEY_FRAME) { savings += prev_coef_savings[k]; } } while (++k < ENTROPY_NODES); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); return savings; } static int default_coef_context_savings(VP8_COMP *cpi) { MACROBLOCK *const x = &cpi->mb; int savings = 0; int i = 0; do { int j = 0; do { int k = 0; do { /* at every context */ /* calc probs and branch cts for this frame only */ int t = 0; /* token/prob index */ vp8_tree_probs_from_distribution( MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree, cpi->frame_coef_probs[i][j][k], cpi->frame_branch_ct[i][j][k], x->coef_counts[i][j][k], 256, 1); do { const unsigned int *ct = cpi->frame_branch_ct[i][j][k][t]; const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t]; const vp8_prob oldp = cpi->common.fc.coef_probs[i][j][k][t]; const vp8_prob upd = vp8_coef_update_probs[i][j][k][t]; const int s = prob_update_savings(ct, oldp, newp, upd); if (s > 0) { savings += s; } } while (++t < ENTROPY_NODES); } while (++k < PREV_COEF_CONTEXTS); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); return savings; } void vp8_calc_ref_frame_costs(int *ref_frame_cost, int prob_intra, int prob_last, int prob_garf) { assert(prob_intra >= 0); assert(prob_intra <= 255); assert(prob_last >= 0); assert(prob_last <= 255); assert(prob_garf >= 0); assert(prob_garf <= 255); ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(prob_intra); ref_frame_cost[LAST_FRAME] = vp8_cost_one(prob_intra) + vp8_cost_zero(prob_last); ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(prob_intra) + vp8_cost_one(prob_last) + vp8_cost_zero(prob_garf); ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(prob_intra) + vp8_cost_one(prob_last) + vp8_cost_one(prob_garf); } int vp8_estimate_entropy_savings(VP8_COMP *cpi) { int savings = 0; const int *const rfct = cpi->mb.count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; int new_intra, new_last, new_garf, oldtotal, newtotal; int ref_frame_cost[MAX_REF_FRAMES]; vpx_clear_system_state(); if (cpi->common.frame_type != KEY_FRAME) { if (!(new_intra = rf_intra * 255 / (rf_intra + rf_inter))) new_intra = 1; new_last = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; new_garf = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; vp8_calc_ref_frame_costs(ref_frame_cost, new_intra, new_last, new_garf); newtotal = rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] + rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] + rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] + rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME]; /* old costs */ vp8_calc_ref_frame_costs(ref_frame_cost, cpi->prob_intra_coded, cpi->prob_last_coded, cpi->prob_gf_coded); oldtotal = rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] + rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] + rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] + rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME]; savings += (oldtotal - newtotal) / 256; } if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) { savings += independent_coef_context_savings(cpi); } else { savings += default_coef_context_savings(cpi); } return savings; } #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING int vp8_update_coef_context(VP8_COMP *cpi) { int savings = 0; if (cpi->common.frame_type == KEY_FRAME) { /* Reset to default counts/probabilities at key frames */ vp8_copy(cpi->mb.coef_counts, default_coef_counts); } if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) savings += independent_coef_context_savings(cpi); else savings += default_coef_context_savings(cpi); return savings; } #endif void vp8_update_coef_probs(VP8_COMP *cpi) { int i = 0; #if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) vp8_writer *const w = cpi->bc; #endif int savings = 0; vpx_clear_system_state(); do { int j = 0; do { int k = 0; int prev_coef_savings[ENTROPY_NODES] = { 0 }; if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) { for (k = 0; k < PREV_COEF_CONTEXTS; ++k) { int t; /* token/prob index */ for (t = 0; t < ENTROPY_NODES; ++t) { const unsigned int *ct = cpi->frame_branch_ct[i][j][k][t]; const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t]; const vp8_prob oldp = cpi->common.fc.coef_probs[i][j][k][t]; const vp8_prob upd = vp8_coef_update_probs[i][j][k][t]; prev_coef_savings[t] += prob_update_savings(ct, oldp, newp, upd); } } k = 0; } do { /* note: use result from vp8_estimate_entropy_savings, so no * need to call vp8_tree_probs_from_distribution here. */ /* at every context */ /* calc probs and branch cts for this frame only */ int t = 0; /* token/prob index */ do { const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t]; vp8_prob *Pold = cpi->common.fc.coef_probs[i][j][k] + t; const vp8_prob upd = vp8_coef_update_probs[i][j][k][t]; int s = prev_coef_savings[t]; int u = 0; if (!(cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)) { s = prob_update_savings(cpi->frame_branch_ct[i][j][k][t], *Pold, newp, upd); } if (s > 0) u = 1; /* Force updates on key frames if the new is different, * so that we can be sure we end up with equal probabilities * over the prev coef contexts. */ if ((cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) && cpi->common.frame_type == KEY_FRAME && newp != *Pold) { u = 1; } #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING cpi->update_probs[i][j][k][t] = u; #else vp8_write(w, u, upd); #endif if (u) { /* send/use new probability */ *Pold = newp; #if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) vp8_write_literal(w, newp, 8); #endif savings += s; } } while (++t < ENTROPY_NODES); } while (++k < PREV_COEF_CONTEXTS); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); } #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING static void pack_coef_probs(VP8_COMP *cpi) { int i = 0; vp8_writer *const w = cpi->bc; do { int j = 0; do { int k = 0; do { int t = 0; /* token/prob index */ do { const vp8_prob newp = cpi->common.fc.coef_probs[i][j][k][t]; const vp8_prob upd = vp8_coef_update_probs[i][j][k][t]; const char u = cpi->update_probs[i][j][k][t]; vp8_write(w, u, upd); if (u) { /* send/use new probability */ vp8_write_literal(w, newp, 8); } } while (++t < ENTROPY_NODES); } while (++k < PREV_COEF_CONTEXTS); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); } #endif #ifdef PACKET_TESTING FILE *vpxlogc = 0; #endif static void put_delta_q(vp8_writer *bc, int delta_q) { if (delta_q != 0) { vp8_write_bit(bc, 1); vp8_write_literal(bc, abs(delta_q), 4); if (delta_q < 0) vp8_write_bit(bc, 1); else vp8_write_bit(bc, 0); } else vp8_write_bit(bc, 0); } void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest, unsigned char *dest_end, size_t *size) { int i, j; VP8_HEADER oh; VP8_COMMON *const pc = &cpi->common; vp8_writer *const bc = cpi->bc; MACROBLOCKD *const xd = &cpi->mb.e_mbd; int extra_bytes_packed = 0; unsigned char *cx_data = dest; unsigned char *cx_data_end = dest_end; const int *mb_feature_data_bits; oh.show_frame = (int)pc->show_frame; oh.type = (int)pc->frame_type; oh.version = pc->version; oh.first_partition_length_in_bytes = 0; mb_feature_data_bits = vp8_mb_feature_data_bits; bc[0].error = &pc->error; validate_buffer(cx_data, 3, cx_data_end, &cpi->common.error); cx_data += 3; #if defined(SECTIONBITS_OUTPUT) Sectionbits[active_section = 1] += sizeof(VP8_HEADER) * 8 * 256; #endif /* every keyframe send startcode, width, height, scale factor, clamp * and color type */ if (oh.type == KEY_FRAME) { int v; validate_buffer(cx_data, 7, cx_data_end, &cpi->common.error); /* Start / synch code */ cx_data[0] = 0x9D; cx_data[1] = 0x01; cx_data[2] = 0x2a; v = (pc->horiz_scale << 14) | pc->Width; cx_data[3] = v; cx_data[4] = v >> 8; v = (pc->vert_scale << 14) | pc->Height; cx_data[5] = v; cx_data[6] = v >> 8; extra_bytes_packed = 7; cx_data += extra_bytes_packed; vp8_start_encode(bc, cx_data, cx_data_end); /* signal clr type */ vp8_write_bit(bc, 0); vp8_write_bit(bc, pc->clamp_type); } else { vp8_start_encode(bc, cx_data, cx_data_end); } /* Signal whether or not Segmentation is enabled */ vp8_write_bit(bc, xd->segmentation_enabled); /* Indicate which features are enabled */ if (xd->segmentation_enabled) { /* Signal whether or not the segmentation map is being updated. */ vp8_write_bit(bc, xd->update_mb_segmentation_map); vp8_write_bit(bc, xd->update_mb_segmentation_data); if (xd->update_mb_segmentation_data) { signed char Data; vp8_write_bit(bc, xd->mb_segement_abs_delta); /* For each segmentation feature (Quant and loop filter level) */ for (i = 0; i < MB_LVL_MAX; ++i) { /* For each of the segments */ for (j = 0; j < MAX_MB_SEGMENTS; ++j) { Data = xd->segment_feature_data[i][j]; /* Frame level data */ if (Data) { vp8_write_bit(bc, 1); if (Data < 0) { Data = -Data; vp8_write_literal(bc, Data, mb_feature_data_bits[i]); vp8_write_bit(bc, 1); } else { vp8_write_literal(bc, Data, mb_feature_data_bits[i]); vp8_write_bit(bc, 0); } } else vp8_write_bit(bc, 0); } } } if (xd->update_mb_segmentation_map) { /* Write the probs used to decode the segment id for each mb */ for (i = 0; i < MB_FEATURE_TREE_PROBS; ++i) { int Data = xd->mb_segment_tree_probs[i]; if (Data != 255) { vp8_write_bit(bc, 1); vp8_write_literal(bc, Data, 8); } else vp8_write_bit(bc, 0); } } } vp8_write_bit(bc, pc->filter_type); vp8_write_literal(bc, pc->filter_level, 6); vp8_write_literal(bc, pc->sharpness_level, 3); /* Write out loop filter deltas applied at the MB level based on mode * or ref frame (if they are enabled). */ vp8_write_bit(bc, xd->mode_ref_lf_delta_enabled); if (xd->mode_ref_lf_delta_enabled) { /* Do the deltas need to be updated */ int send_update = xd->mode_ref_lf_delta_update || cpi->oxcf.error_resilient_mode; vp8_write_bit(bc, send_update); if (send_update) { int Data; /* Send update */ for (i = 0; i < MAX_REF_LF_DELTAS; ++i) { Data = xd->ref_lf_deltas[i]; /* Frame level data */ if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i] || cpi->oxcf.error_resilient_mode) { xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i]; vp8_write_bit(bc, 1); if (Data > 0) { vp8_write_literal(bc, (Data & 0x3F), 6); vp8_write_bit(bc, 0); /* sign */ } else { Data = -Data; vp8_write_literal(bc, (Data & 0x3F), 6); vp8_write_bit(bc, 1); /* sign */ } } else vp8_write_bit(bc, 0); } /* Send update */ for (i = 0; i < MAX_MODE_LF_DELTAS; ++i) { Data = xd->mode_lf_deltas[i]; if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i] || cpi->oxcf.error_resilient_mode) { xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i]; vp8_write_bit(bc, 1); if (Data > 0) { vp8_write_literal(bc, (Data & 0x3F), 6); vp8_write_bit(bc, 0); /* sign */ } else { Data = -Data; vp8_write_literal(bc, (Data & 0x3F), 6); vp8_write_bit(bc, 1); /* sign */ } } else vp8_write_bit(bc, 0); } } } /* signal here is multi token partition is enabled */ vp8_write_literal(bc, pc->multi_token_partition, 2); /* Frame Qbaseline quantizer index */ vp8_write_literal(bc, pc->base_qindex, 7); /* Transmit Dc, Second order and Uv quantizer delta information */ put_delta_q(bc, pc->y1dc_delta_q); put_delta_q(bc, pc->y2dc_delta_q); put_delta_q(bc, pc->y2ac_delta_q); put_delta_q(bc, pc->uvdc_delta_q); put_delta_q(bc, pc->uvac_delta_q); /* When there is a key frame all reference buffers are updated using * the new key frame */ if (pc->frame_type != KEY_FRAME) { /* Should the GF or ARF be updated using the transmitted frame * or buffer */ vp8_write_bit(bc, pc->refresh_golden_frame); vp8_write_bit(bc, pc->refresh_alt_ref_frame); /* If not being updated from current frame should either GF or ARF * be updated from another buffer */ if (!pc->refresh_golden_frame) vp8_write_literal(bc, pc->copy_buffer_to_gf, 2); if (!pc->refresh_alt_ref_frame) vp8_write_literal(bc, pc->copy_buffer_to_arf, 2); /* Indicate reference frame sign bias for Golden and ARF frames * (always 0 for last frame buffer) */ vp8_write_bit(bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]); vp8_write_bit(bc, pc->ref_frame_sign_bias[ALTREF_FRAME]); } #if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) { if (pc->frame_type == KEY_FRAME) { pc->refresh_entropy_probs = 1; } else { pc->refresh_entropy_probs = 0; } } #endif vp8_write_bit(bc, pc->refresh_entropy_probs); if (pc->frame_type != KEY_FRAME) vp8_write_bit(bc, pc->refresh_last_frame); vpx_clear_system_state(); #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING pack_coef_probs(cpi); #else if (pc->refresh_entropy_probs == 0) { /* save a copy for later refresh */ memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc)); } vp8_update_coef_probs(cpi); #endif /* Write out the mb_no_coeff_skip flag */ vp8_write_bit(bc, pc->mb_no_coeff_skip); if (pc->frame_type == KEY_FRAME) { write_kfmodes(cpi); } else { pack_inter_mode_mvs(cpi); } vp8_stop_encode(bc); cx_data += bc->pos; oh.first_partition_length_in_bytes = cpi->bc->pos; /* update frame tag */ { int v = (oh.first_partition_length_in_bytes << 5) | (oh.show_frame << 4) | (oh.version << 1) | oh.type; dest[0] = v; dest[1] = v >> 8; dest[2] = v >> 16; } *size = VP8_HEADER_SIZE + extra_bytes_packed + cpi->bc->pos; cpi->partition_sz[0] = (unsigned int)*size; #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING { const int num_part = (1 << pc->multi_token_partition); unsigned char *dp = cpi->partition_d[0] + cpi->partition_sz[0]; if (num_part > 1) { /* write token part sizes (all but last) if more than 1 */ validate_buffer(dp, 3 * (num_part - 1), cpi->partition_d_end[0], &pc->error); cpi->partition_sz[0] += 3 * (num_part - 1); for (i = 1; i < num_part; ++i) { write_partition_size(dp, cpi->partition_sz[i]); dp += 3; } } if (!cpi->output_partition) { /* concatenate partition buffers */ for (i = 0; i < num_part; ++i) { memmove(dp, cpi->partition_d[i + 1], cpi->partition_sz[i + 1]); cpi->partition_d[i + 1] = dp; dp += cpi->partition_sz[i + 1]; } } /* update total size */ *size = 0; for (i = 0; i < num_part + 1; ++i) { *size += cpi->partition_sz[i]; } } #else if (pc->multi_token_partition != ONE_PARTITION) { int num_part = 1 << pc->multi_token_partition; /* partition size table at the end of first partition */ cpi->partition_sz[0] += 3 * (num_part - 1); *size += 3 * (num_part - 1); validate_buffer(cx_data, 3 * (num_part - 1), cx_data_end, &pc->error); for (i = 1; i < num_part + 1; ++i) { cpi->bc[i].error = &pc->error; } pack_tokens_into_partitions(cpi, cx_data + 3 * (num_part - 1), cx_data_end, num_part); for (i = 1; i < num_part; ++i) { cpi->partition_sz[i] = cpi->bc[i].pos; write_partition_size(cx_data, cpi->partition_sz[i]); cx_data += 3; *size += cpi->partition_sz[i]; /* add to total */ } /* add last partition to total size */ cpi->partition_sz[i] = cpi->bc[i].pos; *size += cpi->partition_sz[i]; } else { bc[1].error = &pc->error; vp8_start_encode(&cpi->bc[1], cx_data, cx_data_end); #if CONFIG_MULTITHREAD if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) { pack_mb_row_tokens(cpi, &cpi->bc[1]); } else { vp8_pack_tokens(&cpi->bc[1], cpi->tok, cpi->tok_count); } #else vp8_pack_tokens(&cpi->bc[1], cpi->tok, cpi->tok_count); #endif // CONFIG_MULTITHREAD vp8_stop_encode(&cpi->bc[1]); *size += cpi->bc[1].pos; cpi->partition_sz[1] = cpi->bc[1].pos; } #endif }