ref: ffb17e2c09c3e6de00b07da6e35f47e2ff6c7952
dir: /vp9_spatial_scalable_encoder.c/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * This is an example demonstrating how to implement a multi-layer * VP9 encoding scheme based on spatial scalability for video applications * that benefit from a scalable bitstream. */ #include <stdarg.h> #include <stdlib.h> #include <string.h> #include <time.h> #include "./args.h" #include "vpx/svc_context.h" #include "vpx/vp8cx.h" #include "vpx/vpx_encoder.h" #define VP90_FOURCC 0x30395056 static const struct arg_enum_list encoding_mode_enum[] = { {"i", INTER_LAYER_PREDICTION_I}, {"alt-ip", ALT_INTER_LAYER_PREDICTION_IP}, {"ip", INTER_LAYER_PREDICTION_IP}, {"gf", USE_GOLDEN_FRAME}, {NULL, 0} }; static const arg_def_t encoding_mode_arg = ARG_DEF_ENUM( "m", "encoding-mode", 1, "Encoding mode algorithm", encoding_mode_enum); static const arg_def_t skip_frames_arg = ARG_DEF("s", "skip-frames", 1, "input frames to skip"); static const arg_def_t frames_arg = ARG_DEF("f", "frames", 1, "number of frames to encode"); static const arg_def_t width_arg = ARG_DEF("w", "width", 1, "source width"); static const arg_def_t height_arg = ARG_DEF("h", "height", 1, "source height"); static const arg_def_t timebase_arg = ARG_DEF("t", "timebase", 1, "timebase (num/den)"); static const arg_def_t bitrate_arg = ARG_DEF( "b", "target-bitrate", 1, "encoding bitrate, in kilobits per second"); static const arg_def_t layers_arg = ARG_DEF("l", "layers", 1, "number of SVC layers"); static const arg_def_t kf_dist_arg = ARG_DEF("k", "kf-dist", 1, "number of frames between keyframes"); static const arg_def_t scale_factors_arg = ARG_DEF("r", "scale-factors", 1, "scale factors (lowest to highest layer)"); static const arg_def_t quantizers_arg = ARG_DEF("q", "quantizers", 1, "quantizers (lowest to highest layer)"); static const arg_def_t dummy_frame_arg = ARG_DEF("z", "dummy-frame", 1, "make first frame blank and full size"); static const arg_def_t *svc_args[] = { &encoding_mode_arg, &frames_arg, &width_arg, &height_arg, &timebase_arg, &bitrate_arg, &skip_frames_arg, &layers_arg, &kf_dist_arg, &scale_factors_arg, &quantizers_arg, &dummy_frame_arg, NULL }; static const SVC_ENCODING_MODE default_encoding_mode = INTER_LAYER_PREDICTION_IP; static const uint32_t default_frames_to_skip = 0; static const uint32_t default_frames_to_code = 60 * 60; static const uint32_t default_width = 1920; static const uint32_t default_height = 1080; static const uint32_t default_timebase_num = 1; static const uint32_t default_timebase_den = 60; static const uint32_t default_bitrate = 1000; static const uint32_t default_spatial_layers = 5; static const uint32_t default_kf_dist = 100; static const int default_use_dummy_frame = 1; typedef struct { char *input_filename; char *output_filename; uint32_t frames_to_code; uint32_t frames_to_skip; } AppInput; static void mem_put_le16(char *mem, uint32_t val) { mem[0] = val; mem[1] = val >> 8; } static void mem_put_le32(char *mem, uint32_t val) { mem[0] = val; mem[1] = val >> 8; mem[2] = val >> 16; mem[3] = val >> 24; } static void usage(const char *exec_name) { fprintf(stderr, "Usage: %s <options> input_filename output_filename\n", exec_name); fprintf(stderr, "Options:\n"); arg_show_usage(stderr, svc_args); exit(EXIT_FAILURE); } void die(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); if (fmt[strlen(fmt) - 1] != '\n') printf("\n"); exit(EXIT_FAILURE); } static void die_codec(vpx_codec_ctx_t *ctx, const char *s) { const char *detail = vpx_codec_error_detail(ctx); printf("%s: %s\n", s, vpx_codec_error(ctx)); if (detail) printf(" %s\n", detail); exit(EXIT_FAILURE); } static int read_frame(FILE *f, vpx_image_t *img) { size_t nbytes; int res = 1; int plane; for (plane = 0; plane < 3; ++plane) { uint8_t *ptr; const int w = (plane ? (1 + img->d_w) / 2 : img->d_w); const int h = (plane ? (1 + img->d_h) / 2 : img->d_h); int r; switch (plane) { case 1: ptr = img->planes[VPX_PLANE_U]; break; case 2: ptr = img->planes[VPX_PLANE_V]; break; default: ptr = img->planes[plane]; } for (r = 0; r < h; ++r) { const int to_read = w; nbytes = fread(ptr, 1, to_read, f); if (nbytes != to_read) { res = 0; if (nbytes > 0) printf("Warning: Read partial frame. Check your width & height!\n"); break; } ptr += img->stride[plane]; } if (!res) break; } return res; } static int create_dummy_frame(vpx_image_t *img) { const size_t buf_size = img->w * img->h * 3 / 2; memset(img->planes[0], 129, buf_size); return 1; } static void write_ivf_file_header(FILE *outfile, uint32_t width, uint32_t height, int timebase_num, int timebase_den, int frame_cnt) { char header[32]; header[0] = 'D'; header[1] = 'K'; header[2] = 'I'; header[3] = 'F'; mem_put_le16(header + 4, 0); /* version */ mem_put_le16(header + 6, 32); /* headersize */ mem_put_le32(header + 8, VP90_FOURCC); /* fourcc */ mem_put_le16(header + 12, width); /* width */ mem_put_le16(header + 14, height); /* height */ mem_put_le32(header + 16, timebase_den); /* rate */ mem_put_le32(header + 20, timebase_num); /* scale */ mem_put_le32(header + 24, frame_cnt); /* length */ mem_put_le32(header + 28, 0); /* unused */ (void)fwrite(header, 1, 32, outfile); } static void write_ivf_frame_header(FILE *outfile, vpx_codec_pts_t pts, size_t sz) { char header[12]; mem_put_le32(header, (uint32_t)sz); mem_put_le32(header + 4, pts & 0xFFFFFFFF); mem_put_le32(header + 8, pts >> 32); (void)fwrite(header, 1, 12, outfile); } static void parse_command_line(int argc, const char **argv_, AppInput *app_input, SvcContext *svc_ctx, vpx_codec_enc_cfg_t *enc_cfg) { struct arg arg; char **argv, **argi, **argj; vpx_codec_err_t res; // initialize SvcContext with parameters that will be passed to vpx_svc_init svc_ctx->log_level = SVC_LOG_DEBUG; svc_ctx->spatial_layers = default_spatial_layers; svc_ctx->encoding_mode = default_encoding_mode; // when using a dummy frame, that frame is only encoded to be full size svc_ctx->first_frame_full_size = default_use_dummy_frame; // start with default encoder configuration res = vpx_codec_enc_config_default(vpx_codec_vp9_cx(), enc_cfg, 0); if (res) { die("Failed to get config: %s\n", vpx_codec_err_to_string(res)); } // update enc_cfg with app default values enc_cfg->g_w = default_width; enc_cfg->g_h = default_height; enc_cfg->g_timebase.num = default_timebase_num; enc_cfg->g_timebase.den = default_timebase_den; enc_cfg->rc_target_bitrate = default_bitrate; enc_cfg->kf_min_dist = default_kf_dist; enc_cfg->kf_max_dist = default_kf_dist; // initialize AppInput with default values app_input->frames_to_code = default_frames_to_code; app_input->frames_to_skip = default_frames_to_skip; // process command line options argv = argv_dup(argc - 1, argv_ + 1); for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { arg.argv_step = 1; if (arg_match(&arg, &encoding_mode_arg, argi)) { svc_ctx->encoding_mode = arg_parse_enum_or_int(&arg); } else if (arg_match(&arg, &frames_arg, argi)) { app_input->frames_to_code = arg_parse_uint(&arg); } else if (arg_match(&arg, &width_arg, argi)) { enc_cfg->g_w = arg_parse_uint(&arg); } else if (arg_match(&arg, &height_arg, argi)) { enc_cfg->g_h = arg_parse_uint(&arg); } else if (arg_match(&arg, &height_arg, argi)) { enc_cfg->g_h = arg_parse_uint(&arg); } else if (arg_match(&arg, &timebase_arg, argi)) { enc_cfg->g_timebase = arg_parse_rational(&arg); } else if (arg_match(&arg, &bitrate_arg, argi)) { enc_cfg->rc_target_bitrate = arg_parse_uint(&arg); } else if (arg_match(&arg, &skip_frames_arg, argi)) { app_input->frames_to_skip = arg_parse_uint(&arg); } else if (arg_match(&arg, &layers_arg, argi)) { svc_ctx->spatial_layers = arg_parse_uint(&arg); } else if (arg_match(&arg, &kf_dist_arg, argi)) { enc_cfg->kf_min_dist = arg_parse_uint(&arg); enc_cfg->kf_max_dist = enc_cfg->kf_min_dist; } else if (arg_match(&arg, &scale_factors_arg, argi)) { vpx_svc_set_scale_factors(svc_ctx, arg.val); } else if (arg_match(&arg, &quantizers_arg, argi)) { vpx_svc_set_quantizers(svc_ctx, arg.val); } else if (arg_match(&arg, &dummy_frame_arg, argi)) { svc_ctx->first_frame_full_size = arg_parse_int(&arg); } else { ++argj; } } // Check for unrecognized options for (argi = argv; *argi; ++argi) if (argi[0][0] == '-' && strlen(argi[0]) > 1) die("Error: Unrecognized option %s\n", *argi); if (argv[0] == NULL || argv[1] == 0) { usage(argv_[0]); } app_input->input_filename = argv[0]; app_input->output_filename = argv[1]; free(argv); if (enc_cfg->g_w < 16 || enc_cfg->g_w % 2 || enc_cfg->g_h < 16 || enc_cfg->g_h % 2) die("Invalid resolution: %d x %d\n", enc_cfg->g_w, enc_cfg->g_h); printf( "Codec %s\nframes: %d, skip: %d\n" "mode: %d, layers: %d\n" "width %d, height: %d,\n" "num: %d, den: %d, bitrate: %d,\n" "gop size: %d, use_dummy_frame: %d\n", vpx_codec_iface_name(vpx_codec_vp9_cx()), app_input->frames_to_code, app_input->frames_to_skip, svc_ctx->encoding_mode, svc_ctx->spatial_layers, enc_cfg->g_w, enc_cfg->g_h, enc_cfg->g_timebase.num, enc_cfg->g_timebase.den, enc_cfg->rc_target_bitrate, enc_cfg->kf_max_dist, svc_ctx->first_frame_full_size); } int main(int argc, const char **argv) { AppInput app_input = {0}; FILE *infile, *outfile; vpx_codec_ctx_t codec; vpx_codec_enc_cfg_t enc_cfg; SvcContext svc_ctx; uint32_t i; uint32_t frame_cnt = 0; vpx_image_t raw; vpx_codec_err_t res; int pts = 0; /* PTS starts at 0 */ int frame_duration = 1; /* 1 timebase tick per frame */ memset(&svc_ctx, 0, sizeof(svc_ctx)); svc_ctx.log_print = 1; parse_command_line(argc, argv, &app_input, &svc_ctx, &enc_cfg); // Allocate image buffer if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, enc_cfg.g_w, enc_cfg.g_h, 32)) die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h); if (!(infile = fopen(app_input.input_filename, "rb"))) die("Failed to open %s for reading\n", app_input.input_filename); if (!(outfile = fopen(app_input.output_filename, "wb"))) die("Failed to open %s for writing\n", app_input.output_filename); // Initialize codec if (vpx_svc_init(&svc_ctx, &codec, vpx_codec_vp9_cx(), &enc_cfg) != VPX_CODEC_OK) die("Failed to initialize encoder\n"); write_ivf_file_header(outfile, enc_cfg.g_w, enc_cfg.g_h, enc_cfg.g_timebase.num, enc_cfg.g_timebase.den, 0); // skip initial frames for (i = 0; i < app_input.frames_to_skip; ++i) { read_frame(infile, &raw); } // Encode frames while (frame_cnt <= app_input.frames_to_code) { if (frame_cnt == 0 && svc_ctx.first_frame_full_size) { create_dummy_frame(&raw); } else { if (!read_frame(infile, &raw)) break; } res = vpx_svc_encode(&svc_ctx, &codec, &raw, pts, frame_duration, VPX_DL_REALTIME); printf("%s", vpx_svc_get_message(&svc_ctx)); if (res != VPX_CODEC_OK) { die_codec(&codec, "Failed to encode frame"); } if (vpx_svc_get_frame_size(&svc_ctx) > 0) { write_ivf_frame_header(outfile, pts, vpx_svc_get_frame_size(&svc_ctx)); (void)fwrite(vpx_svc_get_buffer(&svc_ctx), 1, vpx_svc_get_frame_size(&svc_ctx), outfile); } ++frame_cnt; pts += frame_duration; } printf("Processed %d frames\n", frame_cnt - svc_ctx.first_frame_full_size); fclose(infile); if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec"); // rewrite the output file headers with the actual frame count if (!fseek(outfile, 0, SEEK_SET)) { write_ivf_file_header(outfile, enc_cfg.g_w, enc_cfg.g_h, enc_cfg.g_timebase.num, enc_cfg.g_timebase.den, frame_cnt); } fclose(outfile); vpx_img_free(&raw); // display average size, psnr printf("%s", vpx_svc_dump_statistics(&svc_ctx)); vpx_svc_release(&svc_ctx); return EXIT_SUCCESS; }