shithub: openh264

ref: ca51ee0f442a12113630faa2514be609ca6730aa
dir: /codec/common/inc/macros.h/

View raw version
/*!
 * \copy
 *     Copyright (c)  2009-2013, Cisco Systems
 *     All rights reserved.
 *
 *     Redistribution and use in source and binary forms, with or without
 *     modification, are permitted provided that the following conditions
 *     are met:
 *
 *        * Redistributions of source code must retain the above copyright
 *          notice, this list of conditions and the following disclaimer.
 *
 *        * Redistributions in binary form must reproduce the above copyright
 *          notice, this list of conditions and the following disclaimer in
 *          the documentation and/or other materials provided with the
 *          distribution.
 *
 *     THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *     "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *     LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *     FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *     COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *     INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *     BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *     LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *     CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *     LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *     ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *     POSSIBILITY OF SUCH DAMAGE.
 *
 *
 * \file    macros.h
 *
 * \brief   MACRO based tool utilization
 *
 * \date    3/13/2009 Created
 *
 *************************************************************************************
 */
#ifndef WELS_MACRO_UTILIZATIONS_H__
#define WELS_MACRO_UTILIZATIONS_H__

#include <math.h>
#include <assert.h>
#include <string.h>
#include "typedefs.h"


/*
* ENFORCE_STACK_ALIGN_1D: force 1 dimension local data aligned in stack
* _tp: type
* _nm: var name
* _sz: size
* _al: align bytes
* auxiliary var: _nm ## _tEmP
*/
#define ENFORCE_STACK_ALIGN_1D(_tp, _nm, _sz, _al) \
    _tp _nm ## _tEmP[(_sz)+(_al)-1]; \
    _tp *_nm = _nm ## _tEmP + ((_al)-1) - (((uintptr_t)(_nm ## _tEmP + ((_al)-1)) & ((_al)-1))/sizeof(_tp));


#define ENFORCE_STACK_ALIGN_2D(_tp, _nm, _cx, _cy, _al) \
    assert( ((_al) && !((_al) & ((_al) - 1))) && ((_al) >= sizeof(_tp)) ); /*_al should be power-of-2 and >= sizeof(_tp)*/\
    _tp _nm ## _tEmP[(_cx)*(_cy)+(_al)/sizeof(_tp)-1]; \
    _tp *_nm ## _tEmP_al = _nm ## _tEmP + ((_al)/sizeof(_tp)-1); \
    _nm ## _tEmP_al -= (((uintptr_t)_nm ## _tEmP_al & ((_al)-1))/sizeof(_tp)); \
    _tp (*_nm)[(_cy)] = (_tp (*)[(_cy)])_nm ## _tEmP_al;


#if defined(_MSC_VER)

#if(_MSC_VER < 1700)
#define inline __inline
#endif

#define ALIGNED_DECLARE( type, var, n ) __declspec(align(n)) type var

#elif defined(__GNUC__)

#define ALIGNED_DECLARE( type, var, n ) type var __attribute__((aligned(n)))
#endif//_MSC_VER


#ifndef WELS_ALIGN
#define WELS_ALIGN(x, n) (((x)+(n)-1)&~((n)-1))
#endif//WELS_ALIGN


#if 1 // Alternative implementation of WELS_MAX and WELS_MIN
#ifndef WELS_MAX
#define WELS_MAX(x, y) ((x) > (y) ? (x) : (y))
#endif//WELS_MAX

#ifndef WELS_MIN
#define WELS_MIN(x, y) ((x) < (y) ? (x) : (y))
#endif//WELS_MIN
#else // Alternative implementation of WELS_MAX and WELS_MIN
#ifndef WELS_MAX
#define WELS_MAX(x, y) ((x) - (((x)-(y))&(((x)-(y))>>31)))
#endif//WELS_MAX

#ifndef WELS_MIN
#define WELS_MIN(x, y) ((y) + (((x)-(y))&(((x)-(y))>>31)))
#endif//WELS_MIN
#endif // Alternative implementation of WELS_MAX and WELS_MIN


#ifndef WELS_CEIL
#define WELS_CEIL(x) ceil(x) // FIXME: low complexity instead of math library used
#endif//WELS_CEIL

#ifndef WELS_FLOOR
#define WELS_FLOOR(x) floor(x)        // FIXME: low complexity instead of math library used
#endif//WELS_FLOOR

#ifndef WELS_ROUND
#define WELS_ROUND(x) ((int32_t)(0.5+(x)))
#endif//WELS_ROUND

#ifndef WELS_ROUND64
#define WELS_ROUND64(x) ((int64_t)(0.5+(x)))
#endif//WELS_ROUND

#ifndef WELS_DIV_ROUND
#define WELS_DIV_ROUND(x,y) ((int32_t)((y)==0?((x)/((y)+1)):(((y)/2+(x))/(y))))
#endif//WELS_DIV_ROUND

#ifndef WELS_DIV_ROUND64
#define WELS_DIV_ROUND64(x,y) ((int64_t)((y)==0?((x)/((y)+1)):(((y)/2+(x))/(y))))
#endif//WELS_DIV_ROUND64

#define WELS_NON_ZERO_COUNT_AVERAGE(nC,nA,nB) {         \
  nC = nA + nB + 1;                                     \
  nC >>= (uint8_t)( nA != -1 && nB != -1);              \
  nC += (uint8_t)(nA == -1 && nB == -1);                \
}

static inline int32_t CeilLog2 (int32_t i) {
  int32_t s = 0;
  i--;
  while (i > 0) {
    s++;
    i >>= 1;
  }
  return s;
}
/*
the second path will degrades the performance
*/
#if 1
static inline int32_t WelsMedian (int32_t iX,  int32_t iY, int32_t iZ) {
  int32_t iMin = iX, iMax = iX;

  if (iY < iMin)
    iMin = iY;
  else
    iMax = iY;

  if (iZ < iMin)
    iMin = iZ;
  else if (iZ > iMax)
    iMax = iZ;

  return (iX + iY + iZ) - (iMin + iMax);
}
#else
static inline int32_t WelsMedian (int32_t iX,  int32_t iY, int32_t iZ) {
  int32_t iTmp = (iX - iY) & ((iX - iY) >> 31);
  iX -= iTmp;
  iY += iTmp;
  iY -= (iY - iZ) & ((iY - iZ) >> 31);
  iY += (iX - iY) & ((iX - iY) >> 31);
  return iY;
}

#endif

#ifndef NEG_NUM
//#define NEG_NUM( num ) (-num)
#define NEG_NUM(iX) (1+(~(iX)))
#endif// NEG_NUM

static inline uint8_t WelsClip1 (int32_t iX) {
  uint8_t uiTmp = (uint8_t) (((iX) & ~255) ? (- (iX) >> 31) : (iX));
  return uiTmp;
}

#ifndef WELS_SIGN
#define WELS_SIGN(iX) ((int32_t)(iX) >> 31)
#endif //WELS_SIGN
#ifndef WELS_ABS
#define WELS_ABS(iX) ((WELS_SIGN(iX) ^ (int32_t)(iX)) - WELS_SIGN(iX))
#endif //WELS_ABS

// WELS_CLIP3
#ifndef WELS_CLIP3
#define WELS_CLIP3(iX, iY, iZ) ((iX) < (iY) ? (iY) : ((iX) > (iZ) ? (iZ) : (iX)))
#endif //WELS_CLIP3

template<typename T> T WelsClip3(T iX, T iY, T iZ) {
  if (iX < iY)
    return iY;
  if (iX > iZ)
    return iZ;
  return iX;
}

/*
 * Description: to check variable validation and return the specified result
 *  iResult:    value to be checked
 *  iExpected:  the expected value
 */
#ifndef WELS_VERIFY_RETURN_IFNEQ
#define WELS_VERIFY_RETURN_IFNEQ(iResult, iExpected) \
  if (iResult != iExpected) {                        \
    return iResult;                                  \
  }
#endif//#if WELS_VERIFY_RETURN_IF

/*
 * Description: to check variable validation and return the specified result
 *  iResult:    value to be return
 *  bCaseIf:    negative condition to be verified
 */
#ifndef WELS_VERIFY_RETURN_IF
#define WELS_VERIFY_RETURN_IF(iResult, bCaseIf) \
  if (bCaseIf) {                                \
    return iResult;                             \
  }
#endif//#if WELS_VERIFY_RETURN_IF

/*
 *  Description: to check variable validation and return the specified result
 *      with correspoinding process advance.
 *   result:    value to be return
 *   case_if:   negative condition to be verified
 *   proc:      process need perform
 */
#ifndef WELS_VERIFY_RETURN_PROC_IF
#define WELS_VERIFY_RETURN_PROC_IF(iResult, bCaseIf, fProc) \
  if (bCaseIf) {                                            \
    fProc;                                                  \
    return iResult;                                         \
  }
#endif//#if WELS_VERIFY_RETURN_PROC_IF

static inline int32_t WELS_LOG2 (uint32_t v) {
  int32_t r = 0;
  while (v >>= 1) {
    ++r;
  }
  return r;

}

#define CLIP3_QP_0_51(q) WELS_CLIP3(q, 0, 51) // ((q) < (0) ? (0) : ((q) > (51) ? (51) : (q)))
#define   CALC_BI_STRIDE(width,bitcount)  ((((width * bitcount) + 31) & ~31) >> 3)




#ifndef BUTTERFLY1x2
#define BUTTERFLY1x2(b) (((b)<<8) | (b))
#endif//BUTTERFLY1x2

#ifndef BUTTERFLY2x4
#define BUTTERFLY2x4(wd) (((uint32_t)(wd)<<16) |(wd))
#endif//BUTTERFLY2x4

#ifndef BUTTERFLY4x8
#define BUTTERFLY4x8(dw) (((uint64_t)(dw)<<32) | (dw))
#endif//BUTTERFLY4x8

static inline bool WELS_POWER2_IF (uint32_t v) {
  return (v && ! (v & (v - 1)));
}

#if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ > 4)
#define WELS_GCC_UNUSED  __attribute__((__unused__))
#else
#define WELS_GCC_UNUSED
#endif

inline bool CheckInRangeCloseOpen (const int16_t kiCurrent, const int16_t kiMin, const int16_t kiMax) {
  return ((kiCurrent >= kiMin) && (kiCurrent < kiMax));
}

static inline void WelsSetMemUint32_c (uint32_t* pDst, uint32_t iValue, int32_t iSizeOfData) {
  for (int i = 0; i < iSizeOfData; i++) {
    pDst[i] = iValue;
  }
}

static inline void WelsSetMemUint16_c (uint16_t* pDst, uint16_t iValue, int32_t iSizeOfData) {
  for (int i = 0; i < iSizeOfData; i++) {
    pDst[i] = iValue;
  }
}

inline void WelsSetMemMultiplebytes_c (void* pDst, uint32_t iValue, int32_t iSizeOfData, int32_t iDataLengthOfData) {
  assert (4 == iDataLengthOfData || 2 == iDataLengthOfData || 1 == iDataLengthOfData);

  // TODO: consider add assembly for these functions
  if (0 != iValue) {
    if (4 == iDataLengthOfData) {
      WelsSetMemUint32_c (static_cast<uint32_t*> (pDst), static_cast<uint32_t> (iValue), iSizeOfData);
    } else if (2 == iDataLengthOfData) {
      WelsSetMemUint16_c (static_cast<uint16_t*> (pDst), static_cast<uint16_t> (iValue), iSizeOfData);
    } else {
      memset (static_cast<uint8_t*> (pDst), static_cast<uint8_t> (iValue), iSizeOfData);
    }
  } else {
    memset (static_cast<uint8_t*> (pDst), 0, iSizeOfData * iDataLengthOfData);
  }
}

#endif//WELS_MACRO_UTILIZATIONS_H__