ref: daf67d607f6eba20d0ed67ae25dcf2d3cabbf1ee
dir: /codec/encoder/core/src/ratectl.cpp/
/*! * \copy * Copyright (c) 2009-2013, Cisco Systems * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * * ratectl.c * * Abstract * Rate Control * * History * 9/8/2009 Created * 12/26/2011 Modified * * * *************************************************************************/ #include "rc.h" #include "encoder_context.h" #include "utils.h" #include "svc_enc_golomb.h" namespace WelsSVCEnc { //#define _TEST_TEMP_RC_ #ifdef _TEST_TEMP_RC_ //#define _NOT_USE_AQ_FOR_TEST_ FILE* fp_test_rc = NULL; FILE* fp_vgop = NULL; #endif #define _BITS_RANGE 0 const int32_t g_kiQpToQstepTable[52] = { 63, 71, 79, 89, 100, 112, 126, 141, 159, 178, 200, 224, 252, 283, 317, 356, 400, 449, 504, 566, 635, 713, 800, 898, 1008, 1131, 1270, 1425, 1600, 1796, 2016, 2263, 2540, 2851, 3200, 3592, 4032, 4525, 5080, 5702, 6400, 7184, 8063, 9051,10159,11404,12800,14368,16127,18102, 20319,22807}; //WELS_ROUND(INT_MULTIPLY*pow (2.0, (iQP - 4.0) / 6.0)) void RcInitLayerMemory (SWelsSvcRc* pWelsSvcRc, CMemoryAlign* pMA, const int32_t kiMaxTl) { const int32_t kiSliceNum = pWelsSvcRc->iSliceNum; const int32_t kiGomSize = pWelsSvcRc->iGomSize; const int32_t kiGomSizeD = kiGomSize * sizeof (double); const int32_t kiGomSizeI = kiGomSize * sizeof (int32_t); const int32_t kiLayerRcSize = kiGomSizeD + (kiGomSizeI * 3) + sizeof (SRCTemporal) * kiMaxTl; uint8_t* pBaseMem = (uint8_t*)pMA->WelsMalloc (kiLayerRcSize, "rc_layer_memory"); if (NULL == pBaseMem) return; pWelsSvcRc->pGomComplexity = (double*)pBaseMem; pBaseMem += kiGomSizeD; pWelsSvcRc->pGomForegroundBlockNum = (int32_t*)pBaseMem; pBaseMem += kiGomSizeI; pWelsSvcRc->pCurrentFrameGomSad = (int32_t*)pBaseMem; pBaseMem += kiGomSizeI; pWelsSvcRc->pGomCost = (int32_t*)pBaseMem; pBaseMem += kiGomSizeI; pWelsSvcRc->pTemporalOverRc = (SRCTemporal*)pBaseMem; pWelsSvcRc->pSlicingOverRc = (SRCSlicing*)pMA->WelsMalloc (sizeof (SRCSlicing) * kiSliceNum, "SlicingOverRC"); } void RcFreeLayerMemory (SWelsSvcRc* pWelsSvcRc, CMemoryAlign* pMA) { if (pWelsSvcRc != NULL && pWelsSvcRc->pSlicingOverRc != NULL) { pMA->WelsFree (pWelsSvcRc->pSlicingOverRc, "SlicingOverRC"); pWelsSvcRc->pSlicingOverRc = NULL; } if (pWelsSvcRc != NULL && pWelsSvcRc->pGomComplexity != NULL) { pMA->WelsFree (pWelsSvcRc->pGomComplexity, "rc_layer_memory"); pWelsSvcRc->pGomComplexity = NULL; pWelsSvcRc->pGomForegroundBlockNum = NULL; pWelsSvcRc->pCurrentFrameGomSad = NULL; pWelsSvcRc->pGomCost = NULL; pWelsSvcRc->pTemporalOverRc = NULL; } } static inline int32_t RcConvertQp2QStep (int32_t iQP) { return g_kiQpToQstepTable[iQP]; } static inline int32_t RcConvertQStep2Qp (int32_t iQpStep) { return WELS_ROUND((6 * log (iQpStep*1.0f/INT_MULTIPLY) / log (2.0) + 4.0)); } void RcInitSequenceParameter (sWelsEncCtx* pEncCtx) { SWelsSvcRc* pWelsSvcRc = NULL; SSpatialLayerConfig* pDLayerParam = NULL; int32_t j = 0; int32_t iMbWidth = 0; bool bMultiSliceMode = false; int32_t iGomRowMode0 = 1, iGomRowMode1 = 1; #ifdef _TEST_TEMP_RC_ fp_test_rc = fopen ("testRC.dat", "w"); fp_vgop = fopen ("vgop.dat", "w"); #endif for (j = 0; j < pEncCtx->pSvcParam->iSpatialLayerNum; j++) { SSliceCtx* pSliceCtx = &pEncCtx->pSliceCtxList[j]; pWelsSvcRc = &pEncCtx->pWelsSvcRc[j]; pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[j]; iMbWidth = (pDLayerParam->iVideoWidth >> 4); pWelsSvcRc->iNumberMbFrame = iMbWidth * (pDLayerParam->iVideoHeight >> 4); pWelsSvcRc->iSliceNum = pSliceCtx->iSliceNumInFrame; pWelsSvcRc->iRcVaryPercentage = _BITS_RANGE; // % -- for temp pWelsSvcRc->iRcVaryRatio = pWelsSvcRc->iRcVaryPercentage; pWelsSvcRc->iSkipBufferRatio = SKIP_RATIO; pWelsSvcRc->iQpRangeUpperInFrame = (QP_RANGE_UPPER_MODE1 * MAX_BITS_VARY_PERCENTAGE - ((QP_RANGE_UPPER_MODE1 - QP_RANGE_MODE0) * pWelsSvcRc->iRcVaryRatio)) / MAX_BITS_VARY_PERCENTAGE; pWelsSvcRc->iQpRangeLowerInFrame = (QP_RANGE_LOWER_MODE1 * MAX_BITS_VARY_PERCENTAGE - ((QP_RANGE_LOWER_MODE1 - QP_RANGE_MODE0) * pWelsSvcRc->iRcVaryRatio)) / MAX_BITS_VARY_PERCENTAGE; if (iMbWidth <= MB_WIDTH_THRESHOLD_90P) { pWelsSvcRc->iSkipQpValue = SKIP_QP_90P; iGomRowMode0 = GOM_ROW_MODE0_90P; iGomRowMode1 = GOM_ROW_MODE1_90P; } else if (iMbWidth <= MB_WIDTH_THRESHOLD_180P) { pWelsSvcRc->iSkipQpValue = SKIP_QP_180P; iGomRowMode0 = GOM_ROW_MODE0_180P; iGomRowMode1 = GOM_ROW_MODE1_180P; } else if (iMbWidth <= MB_WIDTH_THRESHOLD_360P) { pWelsSvcRc->iSkipQpValue = SKIP_QP_360P; iGomRowMode0 = GOM_ROW_MODE0_360P; iGomRowMode1 = GOM_ROW_MODE1_360P; } else { pWelsSvcRc->iSkipQpValue = SKIP_QP_720P; iGomRowMode0 = GOM_ROW_MODE0_720P; iGomRowMode1 = GOM_ROW_MODE1_720P; } iGomRowMode0 = iGomRowMode1 + ((iGomRowMode0 - iGomRowMode1) * pWelsSvcRc->iRcVaryRatio / MAX_BITS_VARY_PERCENTAGE); pWelsSvcRc->iNumberMbGom = iMbWidth * iGomRowMode0; pWelsSvcRc->iMinQp = GOM_MIN_QP_MODE; pWelsSvcRc->iMaxQp = GOM_MAX_QP_MODE; pWelsSvcRc->iFrameDeltaQpUpper = LAST_FRAME_QP_RANGE_UPPER_MODE1 - ((LAST_FRAME_QP_RANGE_UPPER_MODE1 - LAST_FRAME_QP_RANGE_UPPER_MODE0) * pWelsSvcRc->iRcVaryRatio / MAX_BITS_VARY_PERCENTAGE); pWelsSvcRc->iFrameDeltaQpLower = LAST_FRAME_QP_RANGE_LOWER_MODE1 - ((LAST_FRAME_QP_RANGE_LOWER_MODE1 - LAST_FRAME_QP_RANGE_LOWER_MODE0) * pWelsSvcRc->iRcVaryRatio / MAX_BITS_VARY_PERCENTAGE); pWelsSvcRc->iSkipFrameNum = 0; pWelsSvcRc->iGomSize = (pWelsSvcRc->iNumberMbFrame + pWelsSvcRc->iNumberMbGom - 1) / pWelsSvcRc->iNumberMbGom; RcInitLayerMemory (pWelsSvcRc, pEncCtx->pMemAlign, 1 + pEncCtx->pSvcParam->sDependencyLayers[j].iHighestTemporalId); bMultiSliceMode = ((SM_RASTER_SLICE == pDLayerParam->sSliceCfg.uiSliceMode) || (SM_ROWMB_SLICE == pDLayerParam->sSliceCfg.uiSliceMode) || (SM_DYN_SLICE == pDLayerParam->sSliceCfg.uiSliceMode)); if (bMultiSliceMode) pWelsSvcRc->iNumberMbGom = pWelsSvcRc->iNumberMbFrame; } } void RcInitTlWeight (sWelsEncCtx* pEncCtx) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc; SSpatialLayerInternal* pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId]; const int32_t kiDecompositionStages = pDLayerParam->iDecompositionStages; const int32_t kiHighestTid = pDLayerParam->iHighestTemporalId; //Index 0:Virtual GOP size, Index 1:Frame rate //double WeightArray[4][4] = { {1.0, 0, 0, 0}, {0.6, 0.4, 0, 0}, {0.4, 0.3, 0.15, 0}, {0.25, 0.15, 0.125, 0.0875}}; int32_t iWeightArray[4][4] = { {2000, 0, 0, 0}, {1200, 800, 0, 0}, {800, 600, 300, 0}, {500, 300, 250, 175}}; // original*WEIGHT_MULTIPLY const int32_t kiGopSize = (1 << kiDecompositionStages); int32_t i, k, n; n = 0; while (n <= kiHighestTid) { pTOverRc[n].iTlayerWeight = iWeightArray[kiDecompositionStages][n]; ++ n; } //Calculate the frame index for the current frame and its reference frame for (n = 0; n < VGOP_SIZE; n += kiGopSize) { pWelsSvcRc->iTlOfFrames[n] = 0; for (i = 1; i <= kiDecompositionStages; i++) { for (k = 1 << (kiDecompositionStages - i); k < kiGopSize; k += (kiGopSize >> (i - 1))) { pWelsSvcRc->iTlOfFrames[k + n] = i; } } } pWelsSvcRc->iPreviousGopSize = kiGopSize; pWelsSvcRc->iGopNumberInVGop = VGOP_SIZE / kiGopSize; } void RcUpdateBitrateFps (sWelsEncCtx* pEncCtx) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc; SSpatialLayerConfig* pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId]; SSpatialLayerInternal* pDLayerParamInternal = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId]; const int32_t kiGopSize = (1 << pDLayerParamInternal->iDecompositionStages); const int32_t kiHighestTid = pDLayerParamInternal->iHighestTemporalId; int32_t input_iBitsPerFrame = WELS_ROUND(pDLayerParam->iSpatialBitrate * INT_MULTIPLY / pDLayerParamInternal->fInputFrameRate); const int32_t kiGopBits = WELS_DIV_ROUND(input_iBitsPerFrame * kiGopSize, INT_MULTIPLY); int32_t i; pWelsSvcRc->iBitRate = pDLayerParam->iSpatialBitrate; pWelsSvcRc->fFrameRate = pDLayerParamInternal->fInputFrameRate; int32_t iTargetVaryRange = FRAME_iTargetBits_VARY_RANGE * (MAX_BITS_VARY_PERCENTAGE - pWelsSvcRc->iRcVaryRatio); int32_t iMinBitsRatio = (MAX_BITS_VARY_PERCENTAGE) * INT_MULTIPLY - iTargetVaryRange; int32_t iMaxBitsRatio = (MAX_BITS_VARY_PERCENTAGE) * (INT_MULTIPLY + FRAME_iTargetBits_VARY_RANGE); for (i = 0; i <= kiHighestTid; i++) { const int64_t kdConstraitBits = kiGopBits * pTOverRc[i].iTlayerWeight; pTOverRc[i].iMinBitsTl = WELS_DIV_ROUND(kdConstraitBits * iMinBitsRatio, INT_MULTIPLY * MAX_BITS_VARY_PERCENTAGE * WEIGHT_MULTIPLY); pTOverRc[i].iMaxBitsTl = WELS_DIV_ROUND(kdConstraitBits * iMaxBitsRatio, INT_MULTIPLY * MAX_BITS_VARY_PERCENTAGE * WEIGHT_MULTIPLY); } //When bitrate is changed, pBuffer size should be updated pWelsSvcRc->iBufferSizeSkip = WELS_DIV_ROUND(pWelsSvcRc->iBitRate * pWelsSvcRc->iSkipBufferRatio, INT_MULTIPLY); pWelsSvcRc->iBufferSizePadding = WELS_DIV_ROUND(pWelsSvcRc->iBitRate * PADDING_BUFFER_RATIO, INT_MULTIPLY); //change remaining bits if (pWelsSvcRc->iBitsPerFrame > REMAIN_BITS_TH) pWelsSvcRc->iRemainingBits = pWelsSvcRc->iRemainingBits * input_iBitsPerFrame / pWelsSvcRc->iBitsPerFrame; pWelsSvcRc->iBitsPerFrame = input_iBitsPerFrame; } void RcInitVGop (sWelsEncCtx* pEncCtx) { const int32_t kiDid = pEncCtx->uiDependencyId; SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid]; SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc; const int32_t kiHighestTid = pEncCtx->pSvcParam->sDependencyLayers[kiDid].iHighestTemporalId; pWelsSvcRc->iRemainingBits = WELS_DIV_ROUND(VGOP_SIZE * pWelsSvcRc->iBitsPerFrame, INT_MULTIPLY); pWelsSvcRc->iRemainingWeights = pWelsSvcRc->iGopNumberInVGop * WEIGHT_MULTIPLY; pWelsSvcRc->iFrameCodedInVGop = 0; pWelsSvcRc->iGopIndexInVGop = 0; for (int32_t i = 0; i <= kiHighestTid; ++ i) pTOverRc[i].iGopBitsDq = 0; pWelsSvcRc->iSkipFrameInVGop = 0; } void RcInitRefreshParameter (sWelsEncCtx* pEncCtx) { const int32_t kiDid = pEncCtx->uiDependencyId; SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid]; SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc; SSpatialLayerConfig* pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[kiDid]; SSpatialLayerInternal* pDLayerParamInternal = &pEncCtx->pSvcParam->sDependencyLayers[kiDid]; const int32_t kiHighestTid = pDLayerParamInternal->iHighestTemporalId; int32_t i; //I frame R-Q Model pWelsSvcRc->iIntraComplexity = 0; pWelsSvcRc->iIntraMbCount = 0; //P frame R-Q Model for (i = 0; i <= kiHighestTid; i++) { pTOverRc[i].iPFrameNum = 0; pTOverRc[i].iLinearCmplx = 0; pTOverRc[i].iFrameCmplxMean = 0; } pWelsSvcRc->iBufferFullnessSkip = 0; pWelsSvcRc->iBufferFullnessPadding = 0; pWelsSvcRc->iGopIndexInVGop = 0; pWelsSvcRc->iRemainingBits = 0; pWelsSvcRc->iBitsPerFrame = 0; //Backup the initial bitrate and fps pWelsSvcRc->iPreviousBitrate = pDLayerParam->iSpatialBitrate; pWelsSvcRc->dPreviousFps = pDLayerParamInternal->fInputFrameRate; memset (pWelsSvcRc->pCurrentFrameGomSad, 0, pWelsSvcRc->iGomSize * sizeof (int32_t)); RcInitTlWeight (pEncCtx); RcUpdateBitrateFps (pEncCtx); RcInitVGop (pEncCtx); } bool RcJudgeBitrateFpsUpdate (sWelsEncCtx* pEncCtx) { int32_t iCurDid = pEncCtx->uiDependencyId; SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[iCurDid]; SSpatialLayerInternal* pDLayerParamInternal = &pEncCtx->pSvcParam->sDependencyLayers[iCurDid]; SSpatialLayerConfig* pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[iCurDid]; if ((pWelsSvcRc->iPreviousBitrate != pDLayerParam->iSpatialBitrate) || (pWelsSvcRc->dPreviousFps - pDLayerParamInternal->fInputFrameRate) > EPSN || (pWelsSvcRc->dPreviousFps - pDLayerParamInternal->fInputFrameRate) < -EPSN) { pWelsSvcRc->iPreviousBitrate = pDLayerParam->iSpatialBitrate; pWelsSvcRc->dPreviousFps = pDLayerParamInternal->fInputFrameRate; return true; } else return false; } #if GOM_TRACE_FLAG void RcTraceVGopBitrate (sWelsEncCtx* pEncCtx) { const int32_t kiDid = pEncCtx->uiDependencyId; SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid]; if (pWelsSvcRc->iFrameCodedInVGop) { const int32_t kiHighestTid = pEncCtx->pSvcParam->sDependencyLayers[kiDid].iHighestTemporalId; SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc; int32_t iVGopBitrate = 0; int32_t iTotalBits = pWelsSvcRc->iPaddingBitrateStat; int32_t iTid = 0; while (iTid <= kiHighestTid) { iTotalBits += pTOverRc[iTid].iGopBitsDq; ++ iTid; } int32_t iFrameInVGop = pWelsSvcRc->iFrameCodedInVGop + pWelsSvcRc->iSkipFrameInVGop; if (0 != iFrameInVGop) iVGopBitrate = WELS_ROUND (iTotalBits / iFrameInVGop * pWelsSvcRc->fFrameRate); #ifdef _TEST_TEMP_Rc_ fprintf (fp_vgop, "%d\n", WELS_ROUND ((double)iTotalBits / iFrameInVGop)); #endif WelsLog (pEncCtx, WELS_LOG_INFO, "[Rc] VGOPbitrate%d: %d \n", kiDid, iVGopBitrate); if (iTotalBits > 0) { iTid = 0; while (iTid <= kiHighestTid) { WelsLog (pEncCtx, WELS_LOG_INFO, "T%d=%8.3f \n", iTid, (double) (pTOverRc[iTid].iGopBitsDq / iTotalBits)); ++ iTid; } } } } #endif void RcUpdateTemporalZero (sWelsEncCtx* pEncCtx) { const int32_t kiDid = pEncCtx->uiDependencyId; SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid]; SSpatialLayerInternal* pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[kiDid]; const int32_t kiGopSize = (1 << pDLayerParam->iDecompositionStages); if (pWelsSvcRc->iPreviousGopSize != kiGopSize) { #if GOM_TRACE_FLAG RcTraceVGopBitrate (pEncCtx); #endif RcInitTlWeight (pEncCtx); RcInitVGop (pEncCtx); } else if (pWelsSvcRc->iGopIndexInVGop == pWelsSvcRc->iGopNumberInVGop || pEncCtx->eSliceType == I_SLICE) { #if GOM_TRACE_FLAG RcTraceVGopBitrate (pEncCtx); #endif RcInitVGop (pEncCtx); } pWelsSvcRc->iGopIndexInVGop++; } void RcInitIdrQp (sWelsEncCtx* pEncCtx) { double dBpp = 0; int32_t i; //64k@6fps for 90p: bpp 0.74 QP:24 //192k@12fps for 180p: bpp 0.28 QP:26 //512k@24fps for 360p: bpp 0.09 QP:30 //1500k@30fps for 720p: bpp 0.05 QP:32 double dBppArray[4][3] = {{0.5, 0.75, 1.0}, {0.2, 0.3, 0.4}, {0.05, 0.09, 0.13}, {0.03, 0.06, 0.1}}; int32_t dInitialQPArray[4][4] = {{28, 26, 24, 22}, {30, 28, 26, 24}, {32, 30, 28, 26}, {34, 32, 30, 28}}; int32_t iBppIndex = 0; SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SSpatialLayerConfig* pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId]; if (pDLayerParam->fFrameRate > EPSN && pDLayerParam->iVideoWidth && pDLayerParam->iVideoHeight) dBpp = (double) (pDLayerParam->iSpatialBitrate) / (double) (pDLayerParam->fFrameRate * pDLayerParam->iVideoWidth * pDLayerParam->iVideoHeight); else dBpp = 0.1; //Area*2 if (pDLayerParam->iVideoWidth * pDLayerParam->iVideoHeight <= 28800) // 90p video:160*90 iBppIndex = 0; else if (pDLayerParam->iVideoWidth * pDLayerParam->iVideoHeight <= 115200) // 180p video:320*180 iBppIndex = 1; else if (pDLayerParam->iVideoWidth * pDLayerParam->iVideoHeight <= 460800) // 360p video:640*360 iBppIndex = 2; else iBppIndex = 3; //Search for (i = 0; i < 3; i++) { if (dBpp <= dBppArray[iBppIndex][i]) break; } pWelsSvcRc->iInitialQp = dInitialQPArray[iBppIndex][i]; pWelsSvcRc->iInitialQp = WELS_CLIP3 (pWelsSvcRc->iInitialQp, MIN_IDR_QP, MAX_IDR_QP); pEncCtx->iGlobalQp = pWelsSvcRc->iInitialQp; pWelsSvcRc->iQStep = RcConvertQp2QStep (pEncCtx->iGlobalQp); pWelsSvcRc->iLastCalculatedQScale = pEncCtx->iGlobalQp; } void RcCalculateIdrQp (sWelsEncCtx* pEncCtx) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; //obtain the idr qp using previous idr complexity if (pWelsSvcRc->iNumberMbFrame != pWelsSvcRc->iIntraMbCount) { pWelsSvcRc->iIntraComplexity = pWelsSvcRc->iIntraComplexity * pWelsSvcRc->iNumberMbFrame / pWelsSvcRc->iIntraMbCount; } pWelsSvcRc->iInitialQp = RcConvertQStep2Qp (pWelsSvcRc->iIntraComplexity / pWelsSvcRc->iTargetBits); pWelsSvcRc->iInitialQp = WELS_CLIP3 (pWelsSvcRc->iInitialQp, MIN_IDR_QP, MAX_IDR_QP); pEncCtx->iGlobalQp = pWelsSvcRc->iInitialQp; pWelsSvcRc->iQStep = RcConvertQp2QStep (pEncCtx->iGlobalQp); pWelsSvcRc->iLastCalculatedQScale = pEncCtx->iGlobalQp; } void RcCalculatePictureQp (sWelsEncCtx* pEncCtx) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; int32_t iTl = pEncCtx->uiTemporalId; SRCTemporal* pTOverRc = &pWelsSvcRc->pTemporalOverRc[iTl]; int32_t iLumaQp = 0; if (0 == pTOverRc->iPFrameNum) { iLumaQp = pWelsSvcRc->iInitialQp; } else if (pWelsSvcRc->iCurrentBitsLevel == BITS_EXCEEDED) { iLumaQp = MAX_LOW_BR_QP; //limit QP int32_t iLastIdxCodecInVGop = pWelsSvcRc->iFrameCodedInVGop - 1; if (iLastIdxCodecInVGop < 0) iLastIdxCodecInVGop += VGOP_SIZE; int32_t iTlLast = pWelsSvcRc->iTlOfFrames[iLastIdxCodecInVGop]; int32_t iDeltaQpTemporal = iTl - iTlLast; if (0 == iTlLast && iTl > 0) iDeltaQpTemporal += 3; else if (0 == iTl && iTlLast > 0) iDeltaQpTemporal -= 3; iLumaQp = WELS_CLIP3 (iLumaQp, pWelsSvcRc->iLastCalculatedQScale - pWelsSvcRc->iFrameDeltaQpLower + iDeltaQpTemporal, pWelsSvcRc->iLastCalculatedQScale + pWelsSvcRc->iFrameDeltaQpUpper + iDeltaQpTemporal); iLumaQp = WELS_CLIP3 (iLumaQp, GOM_MIN_QP_MODE, MAX_LOW_BR_QP); pWelsSvcRc->iQStep = RcConvertQp2QStep (iLumaQp); pWelsSvcRc->iLastCalculatedQScale = iLumaQp; if (pEncCtx->pSvcParam->bEnableAdaptiveQuant) { iLumaQp = WELS_CLIP3 ((iLumaQp*INT_MULTIPLY - pEncCtx->pVaa->sAdaptiveQuantParam.iAverMotionTextureIndexToDeltaQp)/INT_MULTIPLY, GOM_MIN_QP_MODE, MAX_LOW_BR_QP); } pEncCtx->iGlobalQp = iLumaQp; return; } else { int64_t iCmplxRatio = WELS_DIV_ROUND64(pEncCtx->pVaa->sComplexityAnalysisParam.iFrameComplexity *INT_MULTIPLY, pTOverRc->iFrameCmplxMean); iCmplxRatio = WELS_CLIP3 (iCmplxRatio, INT_MULTIPLY - FRAME_CMPLX_RATIO_RANGE, INT_MULTIPLY + FRAME_CMPLX_RATIO_RANGE); pWelsSvcRc->iQStep = WELS_DIV_ROUND((pTOverRc->iLinearCmplx * iCmplxRatio), (pWelsSvcRc->iTargetBits * INT_MULTIPLY)); iLumaQp = RcConvertQStep2Qp (pWelsSvcRc->iQStep); //limit QP int32_t iLastIdxCodecInVGop = pWelsSvcRc->iFrameCodedInVGop - 1; if (iLastIdxCodecInVGop < 0) iLastIdxCodecInVGop += VGOP_SIZE; int32_t iTlLast = pWelsSvcRc->iTlOfFrames[iLastIdxCodecInVGop]; int32_t iDeltaQpTemporal = iTl - iTlLast; if (0 == iTlLast && iTl > 0) iDeltaQpTemporal += 3; else if (0 == iTl && iTlLast > 0) iDeltaQpTemporal -= 3; iLumaQp = WELS_CLIP3 (iLumaQp, pWelsSvcRc->iLastCalculatedQScale - pWelsSvcRc->iFrameDeltaQpLower + iDeltaQpTemporal, pWelsSvcRc->iLastCalculatedQScale + pWelsSvcRc->iFrameDeltaQpUpper + iDeltaQpTemporal); } iLumaQp = WELS_CLIP3 (iLumaQp, GOM_MIN_QP_MODE, GOM_MAX_QP_MODE); pWelsSvcRc->iQStep = RcConvertQp2QStep (iLumaQp); pWelsSvcRc->iLastCalculatedQScale = iLumaQp; #ifndef _NOT_USE_AQ_FOR_TEST_ if (pEncCtx->pSvcParam->bEnableAdaptiveQuant) { iLumaQp = WELS_DIV_ROUND(iLumaQp*INT_MULTIPLY - pEncCtx->pVaa->sAdaptiveQuantParam.iAverMotionTextureIndexToDeltaQp,INT_MULTIPLY); if (pEncCtx->pSvcParam->iRCMode != RC_LOW_BW_MODE) iLumaQp = WELS_CLIP3 (iLumaQp, pWelsSvcRc->iMinQp, pWelsSvcRc->iMaxQp); } #endif pEncCtx->iGlobalQp = iLumaQp; } void RcInitSliceInformation (sWelsEncCtx* pEncCtx) { SSliceCtx* pCurSliceCtx = pEncCtx->pCurDqLayer->pSliceEncCtx; SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[0]; const int32_t kiSliceNum = pWelsSvcRc->iSliceNum; const int32_t kiBitsPerMb = WELS_DIV_ROUND(pWelsSvcRc->iTargetBits * INT_MULTIPLY, pWelsSvcRc->iNumberMbFrame); for (int32_t i = 0; i < kiSliceNum; i++) { pSOverRc->iStartMbSlice = pSOverRc->iEndMbSlice = pCurSliceCtx->pFirstMbInSlice[i]; pSOverRc->iEndMbSlice += (pCurSliceCtx->pCountMbNumInSlice[i] - 1); pSOverRc->iTotalQpSlice = 0; pSOverRc->iTotalMbSlice = 0; pSOverRc->iTargetBitsSlice = WELS_DIV_ROUND(kiBitsPerMb * pCurSliceCtx->pCountMbNumInSlice[i], INT_MULTIPLY); pSOverRc->iFrameBitsSlice = 0; pSOverRc->iGomBitsSlice = 0; ++ pSOverRc; } } void RcDecideTargetBits (sWelsEncCtx* pEncCtx) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCTemporal* pTOverRc = &pWelsSvcRc->pTemporalOverRc[pEncCtx->uiTemporalId]; pWelsSvcRc->iCurrentBitsLevel = BITS_NORMAL; //allocate bits if (pEncCtx->eSliceType == I_SLICE) { pWelsSvcRc->iTargetBits = WELS_DIV_ROUND(pWelsSvcRc->iBitsPerFrame * IDR_BITRATE_RATIO, INT_MULTIPLY); } else { pWelsSvcRc->iTargetBits = (pWelsSvcRc->iRemainingBits * pTOverRc->iTlayerWeight / pWelsSvcRc->iRemainingWeights); if ((pWelsSvcRc->iTargetBits <= 0) && (pEncCtx->pSvcParam->iRCMode == RC_LOW_BW_MODE)) { pWelsSvcRc->iCurrentBitsLevel = BITS_EXCEEDED; } else if ((pWelsSvcRc->iTargetBits <= pTOverRc->iMinBitsTl) && (pEncCtx->pSvcParam->iRCMode == RC_LOW_BW_MODE)) { pWelsSvcRc->iCurrentBitsLevel = BITS_LIMITED; } pWelsSvcRc->iTargetBits = WELS_CLIP3 (pWelsSvcRc->iTargetBits, pTOverRc->iMinBitsTl, pTOverRc->iMaxBitsTl); } pWelsSvcRc->iRemainingWeights -= pTOverRc->iTlayerWeight; } void RcInitGomParameters (sWelsEncCtx* pEncCtx) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[0]; const int32_t kiSliceNum = pWelsSvcRc->iSliceNum; const int32_t kiGlobalQp = pEncCtx->iGlobalQp; pWelsSvcRc->iAverageFrameQp = 0; for (int32_t i = 0; i < kiSliceNum; ++i) { pSOverRc->iComplexityIndexSlice = 0; pSOverRc->iCalculatedQpSlice = kiGlobalQp; ++ pSOverRc; } memset (pWelsSvcRc->pGomComplexity, 0, pWelsSvcRc->iGomSize * sizeof (double)); memset (pWelsSvcRc->pGomCost, 0, pWelsSvcRc->iGomSize * sizeof (int32_t)); } void RcCalculateMbQp (sWelsEncCtx* pEncCtx, SMB* pCurMb, const int32_t kiSliceId) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[kiSliceId]; int32_t iLumaQp = pSOverRc->iCalculatedQpSlice; SDqLayer* pCurLayer = pEncCtx->pCurDqLayer; const uint8_t kuiChromaQpIndexOffset = pCurLayer->sLayerInfo.pPpsP->uiChromaQpIndexOffset; #ifndef _NOT_USE_AQ_FOR_TEST_ if (pEncCtx->pSvcParam->bEnableAdaptiveQuant) { iLumaQp = (int8_t)WELS_CLIP3 (iLumaQp + pEncCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp[pCurMb->iMbXY], pWelsSvcRc->iMinQp, 51); } #endif pCurMb->uiChromaQp = g_kuiChromaQpTable[CLIP3_QP_0_51 (iLumaQp + kuiChromaQpIndexOffset)]; pCurMb->uiLumaQp = iLumaQp; } SWelsSvcRc* RcJudgeBaseUsability (sWelsEncCtx* pEncCtx) { SWelsSvcRc* pWelsSvcRc = NULL, *pWelsSvcRc_Base = NULL; SSpatialLayerConfig* pDlpBase = NULL, *pDLayerParam = NULL; SSpatialLayerInternal* pDlpBaseInternal = NULL; if (pEncCtx->uiDependencyId <= 0) return NULL; pDlpBaseInternal = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId - 1]; pDlpBase = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId - 1]; pWelsSvcRc_Base = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId - 1]; if (pEncCtx->uiTemporalId <= pDlpBaseInternal->iDecompositionStages) { pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; pWelsSvcRc_Base = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId - 1]; pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId]; pDlpBase = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId - 1]; if ((pDLayerParam->iVideoWidth * pDLayerParam->iVideoHeight / pWelsSvcRc->iNumberMbGom) == (pDlpBase->iVideoWidth * pDlpBase->iVideoHeight / pWelsSvcRc_Base->iNumberMbGom)) return pWelsSvcRc_Base; else return NULL; } else return NULL; } void RcGomTargetBits (sWelsEncCtx* pEncCtx, const int32_t kiSliceId) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SWelsSvcRc* pWelsSvcRc_Base = NULL; SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[kiSliceId]; int32_t iAllocateBits = 0; int32_t iSumSad = 0; int32_t iLastGomIndex = 0; int32_t iLeftBits = 0; const int32_t kiComplexityIndex = pSOverRc->iComplexityIndexSlice; int32_t i; iLastGomIndex = pSOverRc->iEndMbSlice / pWelsSvcRc->iNumberMbGom; iLeftBits = pSOverRc->iTargetBitsSlice - pSOverRc->iFrameBitsSlice; if (iLeftBits <= 0) { pSOverRc->iGomTargetBits = 0; return; } else if (kiComplexityIndex >= iLastGomIndex) { iAllocateBits = iLeftBits; } else { pWelsSvcRc_Base = RcJudgeBaseUsability (pEncCtx); pWelsSvcRc_Base = (pWelsSvcRc_Base) ? pWelsSvcRc_Base : pWelsSvcRc; for (i = kiComplexityIndex; i <= iLastGomIndex; i++) { iSumSad += pWelsSvcRc_Base->pCurrentFrameGomSad[i]; } if (0 == iSumSad) iAllocateBits = WELS_DIV_ROUND(iLeftBits, (iLastGomIndex - kiComplexityIndex)); else iAllocateBits = WELS_DIV_ROUND(iLeftBits * pWelsSvcRc_Base->pCurrentFrameGomSad[kiComplexityIndex + 1], iSumSad); } pSOverRc->iGomTargetBits = iAllocateBits; } void RcCalculateGomQp (sWelsEncCtx* pEncCtx, SMB* pCurMb, int32_t iSliceId) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[iSliceId]; int32_t iBitsRatio = 1; int32_t iLeftBits = pSOverRc->iTargetBitsSlice - pSOverRc->iFrameBitsSlice; int32_t iTargetLeftBits = iLeftBits + pSOverRc->iGomBitsSlice - pSOverRc->iGomTargetBits; if (iLeftBits <= 0) { pSOverRc->iCalculatedQpSlice += 2; } else { //globe decision iBitsRatio = 10000 * iLeftBits / (iTargetLeftBits+1); if (iBitsRatio < 8409) //2^(-1.5/6)*10000 pSOverRc->iCalculatedQpSlice += 2; else if (iBitsRatio < 9439) //2^(-0.5/6)*10000 pSOverRc->iCalculatedQpSlice += 1; else if (iBitsRatio > 10600) //2^(0.5/6)*10000 pSOverRc->iCalculatedQpSlice -= 1; else if (iBitsRatio > 11900) //2^(1.5/6)*10000 pSOverRc->iCalculatedQpSlice -= 2; } pSOverRc->iCalculatedQpSlice = WELS_CLIP3 (pSOverRc->iCalculatedQpSlice, pEncCtx->iGlobalQp - pWelsSvcRc->iQpRangeLowerInFrame, pEncCtx->iGlobalQp + pWelsSvcRc->iQpRangeUpperInFrame); if (! (pEncCtx->pSvcParam->iRCMode == RC_LOW_BW_MODE)) pSOverRc->iCalculatedQpSlice = WELS_CLIP3 (pSOverRc->iCalculatedQpSlice, pWelsSvcRc->iMinQp, pWelsSvcRc->iMaxQp); pSOverRc->iGomBitsSlice = 0; } void RcVBufferCalculationSkip (sWelsEncCtx* pEncCtx) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc; const int32_t kiOutputBits = WELS_DIV_ROUND(pWelsSvcRc->iBitsPerFrame, INT_MULTIPLY); //condition 1: whole pBuffer fullness pWelsSvcRc->iBufferFullnessSkip += (pWelsSvcRc->iFrameDqBits - kiOutputBits); //condition 2: VGOP bits constraint const int32_t kiVGopBits = WELS_DIV_ROUND(pWelsSvcRc->iBitsPerFrame * VGOP_SIZE, INT_MULTIPLY); int32_t iVGopBitsPred = 0; for (int32_t i = pWelsSvcRc->iFrameCodedInVGop + 1; i < VGOP_SIZE; i++) iVGopBitsPred += pTOverRc[pWelsSvcRc->iTlOfFrames[i]].iMinBitsTl; iVGopBitsPred -= pWelsSvcRc->iRemainingBits; double dIncPercent = iVGopBitsPred * 100.0 / kiVGopBits - (double)VGOP_BITS_PERCENTAGE_DIFF; if ((pWelsSvcRc->iBufferFullnessSkip > pWelsSvcRc->iBufferSizeSkip && pWelsSvcRc->iAverageFrameQp > pWelsSvcRc->iSkipQpValue) || (dIncPercent > pWelsSvcRc->iRcVaryPercentage)) { pEncCtx->iSkipFrameFlag = 1; pWelsSvcRc->iBufferFullnessSkip = pWelsSvcRc->iBufferFullnessSkip - kiOutputBits; #ifdef FRAME_INFO_OUTPUT fprintf (stderr, "skip one frame\n"); #endif } if (pWelsSvcRc->iBufferFullnessSkip < 0) pWelsSvcRc->iBufferFullnessSkip = 0; if (pEncCtx->iSkipFrameFlag == 1) { pWelsSvcRc->iRemainingBits += WELS_DIV_ROUND(pWelsSvcRc->iBitsPerFrame, INT_MULTIPLY); pWelsSvcRc->iSkipFrameNum++; pWelsSvcRc->iSkipFrameInVGop++; } } void WelsRcFrameDelayJudge(void* pCtx) { sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx; SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SSpatialLayerConfig* pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId]; SSpatialLayerInternal* pDLayerParamInternal = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId]; int32_t iSentBits = WELS_ROUND(pDLayerParam->iSpatialBitrate / pDLayerParamInternal->fOutputFrameRate); pWelsSvcRc->bSkipFlag = false; if (pWelsSvcRc->iBufferFullnessSkip > pWelsSvcRc->iBufferSizeSkip) { pWelsSvcRc->bSkipFlag = true; pWelsSvcRc->iBufferFullnessSkip -= iSentBits; pWelsSvcRc->iBufferFullnessSkip = WELS_MAX(pWelsSvcRc->iBufferFullnessSkip, 0); } } void RcVBufferCalculationPadding (sWelsEncCtx* pEncCtx) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; const int32_t kiOutputBits = WELS_DIV_ROUND(pWelsSvcRc->iBitsPerFrame, INT_MULTIPLY); const int32_t kiBufferThreshold = WELS_DIV_ROUND(PADDING_THRESHOLD * (-pWelsSvcRc->iBufferSizePadding), INT_MULTIPLY); pWelsSvcRc->iBufferFullnessPadding += (pWelsSvcRc->iFrameDqBits - kiOutputBits); if (pWelsSvcRc->iBufferFullnessPadding < kiBufferThreshold) { pWelsSvcRc->iPaddingSize = -pWelsSvcRc->iBufferFullnessPadding; pWelsSvcRc->iPaddingSize >>= 3; // /8 pWelsSvcRc->iBufferFullnessPadding = 0; } else pWelsSvcRc->iPaddingSize = 0; } void RcTraceFrameBits (sWelsEncCtx* pEncCtx) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; WelsLog (pEncCtx, WELS_LOG_INFO, "[Rc] encoding_qp%d, qp = %3d, index = %8d, iTid = %1d, used = %8d, target = %8d, remaingbits = %8d\n", pEncCtx->uiDependencyId, pWelsSvcRc->iAverageFrameQp, pEncCtx->iFrameIndex, pEncCtx->uiTemporalId, pWelsSvcRc->iFrameDqBits, pWelsSvcRc->iTargetBits, pWelsSvcRc->iRemainingBits); } void RcUpdatePictureQpBits (sWelsEncCtx* pEncCtx, int32_t iCodedBits) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[0]; SSliceCtx* pCurSliceCtx = pEncCtx->pCurDqLayer->pSliceEncCtx; int32_t iTotalQp = 0, iTotalMb = 0; int32_t i; if (pEncCtx->eSliceType == P_SLICE) { for (i = 0; i < pCurSliceCtx->iSliceNumInFrame; i++) { iTotalQp += pSOverRc->iTotalQpSlice; iTotalMb += pSOverRc->iTotalMbSlice; ++ pSOverRc; } if (iTotalMb > 0) pWelsSvcRc->iAverageFrameQp = WELS_DIV_ROUND(INT_MULTIPLY * iTotalQp, iTotalMb * INT_MULTIPLY); else pWelsSvcRc->iAverageFrameQp = pEncCtx->iGlobalQp; } else { pWelsSvcRc->iAverageFrameQp = pEncCtx->iGlobalQp; } pWelsSvcRc->iFrameDqBits = iCodedBits; pWelsSvcRc->pTemporalOverRc[pEncCtx->uiTemporalId].iGopBitsDq += pWelsSvcRc->iFrameDqBits; } void RcUpdateIntraComplexity (sWelsEncCtx* pEncCtx) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; int32_t iAlpha = WELS_DIV_ROUND(INT_MULTIPLY, (1 + pWelsSvcRc->iIdrNum)); if (iAlpha < (INT_MULTIPLY/4)) iAlpha = INT_MULTIPLY/4; int64_t iIntraCmplx = pWelsSvcRc->iQStep * pWelsSvcRc->iFrameDqBits; pWelsSvcRc->iIntraComplexity = WELS_DIV_ROUND(((INT_MULTIPLY - iAlpha) * pWelsSvcRc->iIntraComplexity + iAlpha * iIntraCmplx), INT_MULTIPLY); pWelsSvcRc->iIntraMbCount = pWelsSvcRc->iNumberMbFrame; pWelsSvcRc->iIdrNum++; if (pWelsSvcRc->iIdrNum > 255) pWelsSvcRc->iIdrNum = 255; } void RcUpdateFrameComplexity (sWelsEncCtx* pEncCtx) { SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; const int32_t kiTl = pEncCtx->uiTemporalId; SRCTemporal* pTOverRc = &pWelsSvcRc->pTemporalOverRc[kiTl]; if (0 == pTOverRc->iPFrameNum) { pTOverRc->iLinearCmplx = ((int64_t)pWelsSvcRc->iFrameDqBits) * pWelsSvcRc->iQStep; } else { pTOverRc->iLinearCmplx = WELS_DIV_ROUND64((LINEAR_MODEL_DECAY_FACTOR * pTOverRc->iLinearCmplx + (INT_MULTIPLY - LINEAR_MODEL_DECAY_FACTOR) * (pWelsSvcRc->iFrameDqBits * pWelsSvcRc->iQStep)), INT_MULTIPLY); } int32_t iAlpha = WELS_DIV_ROUND(INT_MULTIPLY, (1 + pTOverRc->iPFrameNum)); if (iAlpha < SMOOTH_FACTOR_MIN_VALUE) iAlpha = SMOOTH_FACTOR_MIN_VALUE; pTOverRc->iFrameCmplxMean = WELS_DIV_ROUND(((INT_MULTIPLY - iAlpha) * pTOverRc->iFrameCmplxMean + iAlpha * pEncCtx->pVaa->sComplexityAnalysisParam.iFrameComplexity), INT_MULTIPLY); pTOverRc->iPFrameNum++; if (pTOverRc->iPFrameNum > 255) pTOverRc->iPFrameNum = 255; } int32_t RcCalculateCascadingQp (struct TagWelsEncCtx* pEncCtx, int32_t iQp) { int32_t iTemporalQp = 0; if (pEncCtx->pSvcParam->iDecompStages) { if (pEncCtx->uiTemporalId == 0) iTemporalQp = iQp - 3 - (pEncCtx->pSvcParam->iDecompStages - 1); else iTemporalQp = iQp - (pEncCtx->pSvcParam->iDecompStages - pEncCtx->uiTemporalId); iTemporalQp = WELS_CLIP3 (iTemporalQp, 1, 51); } else iTemporalQp = iQp; return iTemporalQp; } void WelsRcPictureInitGom (void* pCtx) { sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx; SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; if (pEncCtx->eSliceType == I_SLICE) { if (0 == pWelsSvcRc->iIdrNum) { //iIdrNum == 0 means encoder has been initialed RcInitRefreshParameter (pEncCtx); } } if (RcJudgeBitrateFpsUpdate (pEncCtx)) { RcUpdateBitrateFps (pEncCtx); } if (pEncCtx->uiTemporalId == 0) { RcUpdateTemporalZero (pEncCtx); } RcDecideTargetBits (pEncCtx); //decide globe_qp if (pEncCtx->eSliceType == I_SLICE) { if (0 == pWelsSvcRc->iIdrNum) RcInitIdrQp (pEncCtx); else { RcCalculateIdrQp (pEncCtx); } } else { RcCalculatePictureQp (pEncCtx); } RcInitSliceInformation (pEncCtx); RcInitGomParameters (pEncCtx); } void WelsRcPictureInfoUpdateGom (void* pCtx, int32_t layer_size) { sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx; SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; int32_t iCodedBits = (layer_size << 3); RcUpdatePictureQpBits (pEncCtx, iCodedBits); if (pEncCtx->eSliceType == P_SLICE) { RcUpdateFrameComplexity (pEncCtx); } else { RcUpdateIntraComplexity (pEncCtx); } pWelsSvcRc->iRemainingBits -= pWelsSvcRc->iFrameDqBits; #if GOM_TRACE_FLAG RcTraceFrameBits (pEncCtx); #endif if (pEncCtx->pSvcParam->bEnableFrameSkip /*&& pEncCtx->uiDependencyId == pEncCtx->pSvcParam->iSpatialLayerNum - 1*/) { RcVBufferCalculationSkip (pEncCtx); } if (pEncCtx->pSvcParam->iPaddingFlag) RcVBufferCalculationPadding (pEncCtx); pWelsSvcRc->iFrameCodedInVGop++; #ifdef _TEST_TEMP_Rc_ fprintf (fp_test_rc, "%d\n", pWelsSvcRc->iFrameDqBits); if (pEncCtx->iSkipFrameFlag) fprintf (fp_test_rc, "0\n"); fflush (fp_test_rc); #endif } void WelsRcMbInitGom (void* pCtx, SMB* pCurMb, SSlice* pSlice) { sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx; SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; const int32_t kiSliceId = pSlice->uiSliceIdx; SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[kiSliceId]; SBitStringAux* bs = pSlice->pSliceBsa; SDqLayer* pCurLayer = pEncCtx->pCurDqLayer; const uint8_t kuiChromaQpIndexOffset = pCurLayer->sLayerInfo.pPpsP->uiChromaQpIndexOffset; pSOverRc->iBsPosSlice = BsGetBitsPos (bs); if (pEncCtx->eSliceType == I_SLICE) { pCurMb->uiLumaQp = pEncCtx->iGlobalQp; pCurMb->uiChromaQp = g_kuiChromaQpTable[CLIP3_QP_0_51 (pCurMb->uiLumaQp + kuiChromaQpIndexOffset)]; return; } //calculate gom qp and target bits at the beginning of gom if (0 == (pCurMb->iMbXY % pWelsSvcRc->iNumberMbGom)) { if (pCurMb->iMbXY != pSOverRc->iStartMbSlice) { pSOverRc->iComplexityIndexSlice++; RcCalculateGomQp (pEncCtx, pCurMb, kiSliceId); } RcGomTargetBits (pEncCtx, kiSliceId); } RcCalculateMbQp (pEncCtx, pCurMb, kiSliceId); } void WelsRcMbInfoUpdateGom (void* pCtx, SMB* pCurMb, int32_t iCostLuma, SSlice* pSlice) { sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx; SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SBitStringAux* bs = pSlice->pSliceBsa; int32_t iSliceId = pSlice->uiSliceIdx; SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[iSliceId]; const int32_t kiComplexityIndex = pSOverRc->iComplexityIndexSlice; int32_t cur_mb_bits = BsGetBitsPos (bs) - pSOverRc->iBsPosSlice; pSOverRc->iFrameBitsSlice += cur_mb_bits; pSOverRc->iGomBitsSlice += cur_mb_bits; pWelsSvcRc->pGomCost[kiComplexityIndex] += iCostLuma; if (cur_mb_bits > 0) { pSOverRc->iTotalQpSlice += pCurMb->uiLumaQp; pSOverRc->iTotalMbSlice++; } } void WelsRcPictureInitDisable (void* pCtx) { sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx; SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SSpatialLayerConfig* pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId]; const int32_t kiQp = pDLayerParam->iDLayerQp; pEncCtx->iGlobalQp = RcCalculateCascadingQp (pEncCtx, kiQp); if (pEncCtx->pSvcParam->bEnableAdaptiveQuant && (pEncCtx->eSliceType == P_SLICE)) { pEncCtx->iGlobalQp = WELS_CLIP3 ( (pEncCtx->iGlobalQp *INT_MULTIPLY - pEncCtx->pVaa->sAdaptiveQuantParam.iAverMotionTextureIndexToDeltaQp)/INT_MULTIPLY, GOM_MIN_QP_MODE, GOM_MAX_QP_MODE); } else { pEncCtx->iGlobalQp = WELS_CLIP3 (pEncCtx->iGlobalQp, 0, 51); } pWelsSvcRc->iAverageFrameQp = pEncCtx->iGlobalQp; } void WelsRcPictureInfoUpdateDisable (void* pCtx, int32_t layer_size) { } void WelsRcMbInitDisable (void* pCtx, SMB* pCurMb, SSlice* pSlice) { sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx; int32_t iLumaQp = pEncCtx->iGlobalQp; SDqLayer* pCurLayer = pEncCtx->pCurDqLayer; const uint8_t kuiChromaQpIndexOffset = pCurLayer->sLayerInfo.pPpsP->uiChromaQpIndexOffset; if (pEncCtx->pSvcParam->bEnableAdaptiveQuant && (pEncCtx->eSliceType == P_SLICE)) { iLumaQp = (int8_t)WELS_CLIP3 (iLumaQp + pEncCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp[pCurMb->iMbXY], GOM_MIN_QP_MODE, 51); } else { iLumaQp = WELS_CLIP3 (iLumaQp, 0, 51); } pCurMb->uiChromaQp = g_kuiChromaQpTable[CLIP3_QP_0_51 (iLumaQp + kuiChromaQpIndexOffset)]; pCurMb->uiLumaQp = iLumaQp; } void WelsRcMbInfoUpdateDisable (void* pCtx, SMB* pCurMb, int32_t iCostLuma, SSlice* pSlice) { } void WelsRcInitModule (void* pCtx, int32_t iModule) { sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx; SWelsRcFunc* pRcf = &pEncCtx->pFuncList->pfRc; switch (iModule) { case WELS_RC_DISABLE: pRcf->pfWelsRcPictureInit = WelsRcPictureInitDisable; pRcf->pfWelsRcPicDelayJudge = NULL; pRcf->pfWelsRcPictureInfoUpdate = WelsRcPictureInfoUpdateDisable; pRcf->pfWelsRcMbInit = WelsRcMbInitDisable; pRcf->pfWelsRcMbInfoUpdate = WelsRcMbInfoUpdateDisable; break; case WELS_RC_GOM: default: pRcf->pfWelsRcPictureInit = WelsRcPictureInitGom; pRcf->pfWelsRcPicDelayJudge = WelsRcFrameDelayJudge; pRcf->pfWelsRcPictureInfoUpdate = WelsRcPictureInfoUpdateGom; pRcf->pfWelsRcMbInit = WelsRcMbInitGom; pRcf->pfWelsRcMbInfoUpdate = WelsRcMbInfoUpdateGom; break; } RcInitSequenceParameter (pEncCtx); } void WelsRcFreeMemory (void* pCtx) { sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx; SWelsSvcRc* pWelsSvcRc = NULL; int32_t i = 0; #ifdef _TEST_TEMP_Rc_ if (fp_test_rc) fclose (fp_test_rc); fp_test_rc = NULL; if (fp_vgop) fclose (fp_vgop); fp_vgop = NULL; #endif for (i = 0; i < pEncCtx->pSvcParam->iSpatialLayerNum; i++) { pWelsSvcRc = &pEncCtx->pWelsSvcRc[i]; RcFreeLayerMemory (pWelsSvcRc, pEncCtx->pMemAlign); } } }//end of namespace