ref: fb4f677f779904b23475a2e972642729006eaa50
dir: /codec/common/macros.h/
/*! * \copy * Copyright (c) 2009-2013, Cisco Systems * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * * \file macros.h * * \brief MACRO based tool utilization * * \date 3/13/2009 Created * ************************************************************************************* */ #ifndef WELS_MACRO_UTILIZATIONS_H__ #define WELS_MACRO_UTILIZATIONS_H__ #include <math.h> #include <assert.h> #include "typedefs.h" /* * ENFORCE_STACK_ALIGN_1D: force 1 dimension local data aligned in stack * _tp: type * _nm: var name * _sz: size * _al: align bytes * auxiliary var: _nm ## _tEmP */ #define ENFORCE_STACK_ALIGN_1D(_tp, _nm, _sz, _al) \ _tp _nm ## _tEmP[(_sz)+(_al)-1]; \ _tp *_nm = _nm ## _tEmP + ((_al)-1) - (((uintptr_t)(_nm ## _tEmP + ((_al)-1)) & ((_al)-1))/sizeof(_tp)); #define ENFORCE_STACK_ALIGN_2D(_tp, _nm, _cx, _cy, _al) \ assert( ((_al) && !((_al) & ((_al) - 1))) && ((_al) >= sizeof(_tp)) ); /*_al should be power-of-2 and >= sizeof(_tp)*/\ _tp _nm ## _tEmP[(_cx)*(_cy)+(_al)/sizeof(_tp)-1]; \ _tp *_nm ## _tEmP_al = _nm ## _tEmP + ((_al)/sizeof(_tp)-1); \ _nm ## _tEmP_al -= (((uintptr_t)_nm ## _tEmP_al & ((_al)-1))/sizeof(_tp)); \ _tp (*_nm)[(_cy)] = (_tp (*)[(_cy)])_nm ## _tEmP_al; #if defined(_MSC_VER) #if(_MSC_VER < 1700) #define inline __inline #endif #define ALIGNED_DECLARE( type, var, n ) __declspec(align(n)) type var #define __align16(t,v) __declspec(align(16)) t v #define ALIGNED_DECLARE_MATRIX_1D(name,size,type,alignment) \ __declspec(align(alignment)) type name[(size)] #define ALIGNED_DECLARE_MATRIX_2D(name,sizex,sizey,type,alignment) \ __declspec(align(alignment)) type name[(sizex)*(sizey)] #elif defined(__GNUC__) #define ALIGNED_DECLARE( type, var, n ) type var __attribute__((aligned(n))) #define __align16(t,v) t v __attribute__ ((aligned (16))) #define ALIGNED_DECLARE_MATRIX_1D(name,size,type,alignment) \ type name[size] __attribute__((aligned(alignment))) #define ALIGNED_DECLARE_MATRIX_2D(name,sizex,sizey,type,alignment) \ type name[(sizex)*(sizey)] __attribute__((aligned(alignment))) #endif//_MSC_VER #ifndef WELS_ALIGN #define WELS_ALIGN(x, n) (((x)+(n)-1)&~((n)-1)) #endif//WELS_ALIGN #if 1 // Alternative implementation of WELS_MAX and WELS_MIN #ifndef WELS_MAX #define WELS_MAX(x, y) ((x) > (y) ? (x) : (y)) #endif//WELS_MAX #ifndef WELS_MIN #define WELS_MIN(x, y) ((x) < (y) ? (x) : (y)) #endif//WELS_MIN #else // Alternative implementation of WELS_MAX and WELS_MIN #ifndef WELS_MAX #define WELS_MAX(x, y) ((x) - (((x)-(y))&(((x)-(y))>>31))) #endif//WELS_MAX #ifndef WELS_MIN #define WELS_MIN(x, y) ((y) + (((x)-(y))&(((x)-(y))>>31))) #endif//WELS_MIN #endif // Alternative implementation of WELS_MAX and WELS_MIN #ifndef WELS_CEIL #define WELS_CEIL(x) ceil(x) // FIXME: low complexity instead of math library used #endif//WELS_CEIL #ifndef WELS_FLOOR #define WELS_FLOOR(x) floor(x) // FIXME: low complexity instead of math library used #endif//WELS_FLOOR #ifndef WELS_ROUND #define WELS_ROUND(x) ((int32_t)(0.5f+(x))) #endif//WELS_ROUND #define WELS_NON_ZERO_COUNT_AVERAGE(nC,nA,nB) { \ nC = nA + nB + 1; \ nC >>= (uint8_t)( nA != -1 && nB != -1); \ nC += (uint8_t)(nA == -1 && nB == -1); \ } static inline int32_t CeilLog2 (int32_t i) { int32_t s = 0; i--; while (i > 0) { s++; i >>= 1; } return s; } /* the second path will degrades the performance */ #if 1 static inline int32_t WelsMedian (int32_t iX, int32_t iY, int32_t iZ) { int32_t iMin = iX, iMax = iX; if (iY < iMin) iMin = iY; else iMax = iY; if (iZ < iMin) iMin = iZ; else if (iZ > iMax) iMax = iZ; return (iX + iY + iZ) - (iMin + iMax); } #else static inline int32_t WelsMedian (int32_t iX, int32_t iY, int32_t iZ) { int32_t iTmp = (iX - iY) & ((iX - iY) >> 31); iX -= iTmp; iY += iTmp; iY -= (iY - iZ) & ((iY - iZ) >> 31); iY += (iX - iY) & ((iX - iY) >> 31); return iY; } #endif #ifndef NEG_NUM //#define NEG_NUM( num ) (-num) #define NEG_NUM(iX) (1+(~(iX))) #endif// NEG_NUM #ifndef WELS_CLIP1 //#define WELS_CLIP1(x) (x & ~255) ? (-x >> 31) : x #define WELS_CLIP1(iX) (((iX) & ~255) ? (-(iX) >> 31) : (iX)) //iX not only a value but also can be an expression #endif//WELS_CLIP1 #ifndef WELS_SIGN #define WELS_SIGN(iX) ((int32_t)(iX) >> 31) #endif //WELS_SIGN #ifndef WELS_ABS #define WELS_ABS(iX) ((WELS_SIGN(iX) ^ (int32_t)(iX)) - WELS_SIGN(iX)) #endif //WELS_ABS // WELS_CLIP3 #ifndef WELS_CLIP3 #define WELS_CLIP3(iX, iY, iZ) ((iX) < (iY) ? (iY) : ((iX) > (iZ) ? (iZ) : (iX))) #endif //WELS_CLIP3 /* * Description: to check variable validation and return the specified result * iResult: value to be checked * iExpected: the expected value */ #ifndef WELS_VERIFY_RETURN_IFNEQ #define WELS_VERIFY_RETURN_IFNEQ(iResult, iExpected) \ if ( iResult != iExpected ){ \ return iResult; \ } #endif//#if WELS_VERIFY_RETURN_IF /* * Description: to check variable validation and return the specified result * iResult: value to be return * bCaseIf: negative condition to be verified */ #ifndef WELS_VERIFY_RETURN_IF #define WELS_VERIFY_RETURN_IF(iResult, bCaseIf) \ if ( bCaseIf ){ \ return iResult; \ } #endif//#if WELS_VERIFY_RETURN_IF /* * Description: to check variable validation and return the specified result * with correspoinding process advance. * result: value to be return * case_if: negative condition to be verified * proc: process need perform */ #ifndef WELS_VERIFY_RETURN_PROC_IF #define WELS_VERIFY_RETURN_PROC_IF(iResult, bCaseIf, fProc) \ if ( bCaseIf ){ \ fProc; \ return iResult; \ } #endif//#if WELS_VERIFY_RETURN_PROC_IF static inline int32_t WELS_LOG2 (uint32_t v) { int32_t r = 0; while (v >>= 1) { ++r; } return r; } #define CLIP3_QP_0_51(q) WELS_CLIP3(q, 0, 51) // ((q) < (0) ? (0) : ((q) > (51) ? (51) : (q))) #define CALC_BI_STRIDE(width,bitcount) ((((width * bitcount) + 31) & ~31) >> 3) #ifndef BUTTERFLY1x2 #define BUTTERFLY1x2(b) (((b)<<8) | (b)) #endif//BUTTERFLY1x2 #ifndef BUTTERFLY2x4 #define BUTTERFLY2x4(wd) (((uint32_t)(wd)<<16) |(wd)) #endif//BUTTERFLY2x4 #ifndef BUTTERFLY4x8 #define BUTTERFLY4x8(dw) (((uint64_t)(dw)<<32) | (dw)) #endif//BUTTERFLY4x8 static inline bool WELS_POWER2_IF (uint32_t v) { return (v && ! (v & (v - 1))); } #endif//WELS_MACRO_UTILIZATIONS_H__